[1] Adel T, Abdelkader C. A Particle swarm optimization approach for optimum design of PID controller for nonlinear systems[C]//2013 International Conference on Electrical Engineering and Software Applications. Hammamet. Tunisia: IEEE, 2013: 682-685.
[2] 甄岩, 郝明瑞. 基于深度强化学习的智能PID控制方法研究[J]. 战术导弹技术, 2019(5): 37-43.
[3] Qureshi M S, Swarnkar P, Gupta S. Fuzzy PID sliding mode control for robotics: An application to surgical robot[J]. Recent Advances in Electrical & Electronic Engineering, 2019, 12(2): 118-129.
[4] Osinski C, Leandro G V, Da Costa Oliveira G H. Fuzzy PID controller design for LFC in electric power systems[J]. IEEE Latin America Transactions, 2019, 17(1): 147-154.
[5] Bhatt R, Parmar G, Gupta R. Whale optimized PID controllers for LFC of two area interconnected thermal power plants[J]. ICTACT Journal on Microelectronics, 2018, 3(4): 467-472.
[6] 袁春元, 蔡锦康, 王新彦. 基于粒子群算法的车辆悬架PID控制器研究[J]. 中国农机化学报, 2019, 40(5): 91-97.
[7] Du X J, Wang J L, Jegatheesan V, et al. Dissolved oxygen control in activated sludge process using a neural networkbased adaptive PID algorithm[J]. Applied Sciences, 2018, 8(2): 261.
[8] 霍召晗, 许鸣珠. 基于小波神经网络PID的永磁同步电机转速控制[J]. 电机与控制应用, 2019, 46(11): 1-6.
[9] Liu X Y, Ding Z, Borst S, et al. Deep reinforcement learning for intelligent transportation systems. (2018-12-03)[2020-03-02]. https://arxiv.org/abs/1812-00979.
[10] Zheng G, Zang X, Xu N, et al. Diagnosing reinforcement learning for traffic signal control. (2019-05-12)[2020-03-02]. https://arxiv.org/abs/1905-04716.