[1] Kahn S A, Patel J H, Lentz C W, et al. Firefighter burn injuries[J]. Journal of Burn Care and Research, 2012, 33(1): 152-156.
[2] Ghazy A, Bergstrom D J. Numerical simulation of heat transfer in firefighters’ protective clothing with multiple air gaps during flash fire exposure[J]. Numerical Heat Transfer, Part A: Applications, 2012, 61(8): 569-593.
[3] 朱方龙,张渭源.基于人体皮肤热模型的热防护服评价方法研究[J].中国安全科学学报,2007,17(11): 134-140.
[4] 朱方龙. 服装的热防护功能[M]. 1版. 北京: 中国纺织出版社, 2015: 10-17.
[5] 卢琳珍, 徐定华, 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(1): 111-118.
[6] He H L, Yu Z C, Song G W. The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters[J]. The Journal of The Textile Institute, 2016, 107(8): 1030-1036.
[7] Fu M, Weng W G, Yuan H Y. Quantitative assessment of the relationship between radiant heat exposure and protective performance of multilayer thermal protective clothing during dry and wet conditions[J]. Journal of Hazardous Materials, 2014, 276: 383-392.
[8] Fu M, Yuan M Q, Weng W G. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation[J]. International Journal of Thermal Sciences, 2015, 96: 201-210.
[9] 曹娟. 含湿量对消防服用织物热防护性能的影响[D]. 天津: 天津工业大学, 2016: 24-26.
[10] Torvi D A, Eng P, Threlfall T G. Heat transfer model of flame resistant fabrics during cooling after exposure to fire[J]. Fire Technology, 2006, 42(1): 27-48.