|本期目录/Table of Contents|

[1]裘松良,鲍琪,马晗茜.Hübner函数的一个极值问题的解[J].浙江理工大学学报,2020,43-44(自科三):362-367.
 QIU Songliang,BAO Qi,MA Hanxi.Solution of an extremal problem on the Hübner function[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科三):362-367.
点击复制

Hübner函数的一个极值问题的解()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第43-44卷
期数:
2020年自科三期
页码:
362-367
栏目:
出版日期:
2020-06-09

文章信息/Info

Title:
Solution of an extremal problem on the Hübner function
文章编号:
1673-3851 (2020) 05-0362-06
作者:
裘松良鲍琪马晗茜
浙江理工大学理学院,杭州 310018
Author(s):
QIU Songliang BAO Qi MA Hanxi
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
Hübner函数极值问题HerschPfluger偏差函数完全椭圆积分不等式
分类号:
O174-6
文献标志码:
A
摘要:
对r∈(0,1),称M( r)=[2r′ 2K(r)K ′(r)/π]+  log r为Hübner函数,其中K和K′为第一类完全椭圆积分。给出了关于M(r)的一个极值问题的解,获得了M(r)的精确上下界,并运用这些结果改进了M(r)和Hersch  Pfluger偏差函数φK(r)的已知界。

参考文献/References:

[1] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley and Sons, 1997:48-50.
[2] Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane[M]. 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1973: 239-248.
[3] Earle C J, Kra I. A supplement to Ahlfors’s lectures[M]// Ahlfors L V. Lectures on Quasiconformal Mappings: Second Edition. Vol 38. American Mathematical Society, 2006: 15-42.
[4] Qiu S L, Vuorinen M. Handbook of Complex Analysis: Geometric Function Theory[M]. NorthHolland: Elsevier B V, Vol 2, 2005: 621-659.
[5] Hersch J, Pfluger A. Généralisation du lemma de Schwarz et du principe de la mesure harmonique pour les fonctions pseudoanalytiques[J]. Comptes Rendus de l’Académie des Sciences, 1952, 234: 43-45.
[6] Anderson G D, Vamanamurthy M K, Vuorinen M. Distortion functions for plane quasiconformal mappings[J]. Israel Journal of Mathematics, 1998, 62(1): 1-16.
[7] Qiu S L, Vamanamurthy M K, Vuorinen M. Some inequalities for the HerschPfluger distortion function[J]. Journal of Inequalities Applications, 1999, 4: 115-139.
[8] Anderson G D, Qiu S L, Vamanamurthy M K, et al. Generalized elliptic integrals and modular equations[J]. Pacific Journal of Mathematics Pacific J. Math, 2000, 192(1): 1-37.
[9] Qiu S L. Singular values, quasiconformal maps and the Schottky upper bound[J]. Science in China (Series A), 1998, 41(12): 1241-1247.
[10] Berndt B C. Ramanujan’s Notebooks: part Ⅲ[M]. Berlin: SpringerVerlag, 1991.
[11] Qiu S L, Vuorinen M. Submultiplicative properties of the φKdistortion function[J]. Studia Mathematica, 1996, 117(3): 225-246.
[12] Qiu S L, Vuorinen M. Infinite products and the normalized quotients of hypergeometric functions[J]. SIAM Journal on Mathematical Analysis, 1999, 30(5): 1057-1075.
[13] Qiu S L, Vamanamurthy M K, Vuorinen M. Bounds for quasiconformal distortion functions[J]. Journal of Mathematical Analysis and Applications, 1997, 205: 43-64.
[14] Qiu S L, Ren L Y. Sharp estimates for Hübner’s upper bound function with applications[J]. Applied MathematicsA Journal of Chinese Unviersities, 2010, 25(2): 227-235.
[15] Wang G D, Zhang X H, Chu Y M, et al. Complete elliptic integrals and the HerschPfluger distortion function (in Chinese)[J]. Acta Mathematica Scientia, 2008, 4: 731-734.
[16] Wang C F. On the precision of Mori’s theorem in Qmapping[J]. Science Record, 1960, 4: 329-333.
[17] Hübner O. Remarks on a paper by awrynowicz on quasiconformal mappings[J]. Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques. 1970, 18: 183-186.
[18] 裘松良,陈世勇.关于φK偏差函数的一类上界的最佳情形[J].浙江理工大学学报,2014, 31(5): 565-570.
[19] Wang M K, Qiu S L, Chu Y M.Infinite series formula for Hübner upper bound function with applications to HerschPfluger distortion function[J]. Mathematical Inequalities and Applications, 2018, 21(3), 629-648.

备注/Memo

备注/Memo:
收稿日期:2019-07-10
Published Online:219-10-08
基金项目:This research is supported by the NSF of P. R. China (Grant No. 11771400).
作者简介:QIU Songliang (1957- ),male, Fuyang, Zhejiang, Professor; research interests: quasiconformal theory, special functions, Ramanuian′s modular equations, etc.; E-mail: sl_qiu@zstu.edu.cn.
更新日期/Last Update: 2020-06-10