|本期目录/Table of Contents|

[1]李帅帅,汪星,李敏,等.三维自支撑Ni-2P纳米片阵列的制备及析氢性能[J].浙江理工大学学报,2020,43-44(自科一):32-38.
 LI Shuaishuai,WANG Xing,LI Min,et al.Preparation and hydrogen evolution performance of  threedimensional selfsupported Ni2P nanosheets[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科一):32-38.
点击复制

三维自支撑Ni-2P纳米片阵列的制备及析氢性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第43-44卷
期数:
2020年自科一期
页码:
32-38
栏目:
出版日期:
2020-01-08

文章信息/Info

Title:
Preparation and hydrogen evolution performance of  threedimensional selfsupported Ni2P nanosheets
文章编号:
1673-3851 (2020) 01-0032-07
作者:
李帅帅汪星李敏刘爱萍
浙江理工大学理学院, 杭州 310018
Author(s):
LI Shuaishuai WANG Xing LI Min LIU Aiping
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
Ni-2P催化剂恒电位沉积析氢反应双电层电容
分类号:
TB333
文献标志码:
A
摘要:
开发性能优异的电解水析氢催化剂,减小析氢反应的过电位,降低氢燃料制备成本是电解水制氢技术应用的关键。采用恒电位沉积技术在镍泡沫上制备出镍羟基氧化物(NiLDH)纳米片前驱体,再通过低温磷化得到Ni2P纳米片阵列,并作为自支撑电极用于碱性环境下的催化析氢反应。结果表明:调整恒电位沉积时间能够有效调节NiLDH纳米片的尺寸及分布;当电沉积时间为7 min时,前驱体形成均匀的纳米片阵列且没有明显堆积;经过磷化得到的Ni2P纳米片具有最大的双电层电容(401 mF/cm2),催化析氢电流密度为100 mA/cm2时所需的过电位最小(1340 mV),塔菲尔斜率最低(910 mV/dec);三维自支撑Ni2P纳米片阵列连续测试24 h后得到的析氢电流稳定,表明Ni2P纳米片阵列具有很好的析氢稳定性,在碱性环境下有电解水获得氢气的潜力。

参考文献/References:

[1] Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences, 2006, 103(43): 15729-15735.
[2] Faunce T A, Lubitz W, Rutherford A W B, et al. Energy and environment policy case for a global project on artificial photosynthesis[J]. Energy & Environmental Science, 2013, 6(3): 695-698.
[3] Gielen D, Boshell F, Saygin D. Climate and energy challenges for materials science[J]. Nature Materials, 2016, 15(2): 117-120.
[4] Christopher K, Dimitrios R. A review on exergy comparison of hydrogen production methods from renewable energy sources[J]. Energy & Environmental Science, 2012, 5(5): 6640-6651.
[5] Azwar M Y, Hussain M A, AbdulWahab A K. Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 158-173.
[6] Zhang F, Shi Y, Yang L, et al. Kinetics for hydrogen production by methanol steam reforming in fluidized bed reactor[J]. Science Bulletin, 2016, 61(5): 401-405.
[7] Tee S Y, Win K Y, Teo W S, et al. Recent progress in energydriven water splitting[J]. Advanced Science, 2017, 4(5): 1600337.
[8] 常进法, 肖瑶, 罗兆艳, 等. 水电解制氢非贵金属催化剂的研究进展[J]. 物理化学学报, 2016, 32(7): 1556-1592.
[9] Yan L, Jiang H, Xing Y, et al. Nickel metalorganic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst[J]. Journal of Materials Chemistry A, 2018, 6(4): 1682-1691.
[10] Cheng N, Stambula S, Wang D, et al. Platinum singleatom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7: 13638.

备注/Memo

备注/Memo:
收稿日期:2019-04-15
网络出版日期: 2019-07-26
基金项目:国家自然科学基金项目(51572242)
作者简介:李帅帅(1992-),男,河南周口人,硕士研究生,主要从事电催化剂材料方面的研究
通信作者:刘爱萍,E-mail:aipingwz@163.com
更新日期/Last Update: 2020-01-08