[1] Shapiro L W, Getu S, Woan W J, et al. The Riordan group[J]. Discrete Applied Mathematics, 1991, 34(1/2/3): 229-239.
[2] Sprugnoli R. Riordan arrays and combinatorial sums[J]. Discrete Mathematics, 1994, 132(1/2/3): 267-290.
[3] Cheon G S,Kim H, Shapiro L W. Combinatorics of Riordan arrays with identical A and Z sequences[J]. Discrete Mathematics, 2012, 312(12/13): 2040-2049.
[4] He T X, Sprugnoli R. Sequence characterization of Riordan arrays[J]. Discrete Mathematics, 2009, 309(12): 3962-3974.
[5] Chen X, Wang Y. Notes on the total positivity of Riordan arrays[J]. Linear Algebra and its Applications, 2019, 569: 156-161.
[6] Yang S L, Dong Y N, He T X, et al. A unified approach for the Catalan matrices by using Riordan arrays[J]. Linear Algebra and its Applications, 2018, 558: 25-43.
[7] Luzón A, Morón M A. Recurrence relations for polynomial sequences via Riordan matrices[J]. Linear Algebra and Its Applications, 2010, 433(7): 1422-1446.
[8] Luzón A, Morón M A, Ramírez J L. Double parameter recurrences for polynomials in biinfinite Riordan matrices and some derived identities[J]. Linear Algebra and its Applications, 2016, 511: 237-258.
[9] Wang W P, Wang H. Some results on convolved (p, q)Fibonacci polynomials[J]. Integral Transforms and Special Functions, 2015, 26(5): 340-356.
[10] Wang W P, Wang H. Generalized Humbert polynomials via generalized Fibonacci polynomials[J]. Applied Mathematics and Computation, 2017, 307: 204-216.