|本期目录/Table of Contents|

[1]张晨璐,王伟平.与Riordan阵相关的若干多项式序列的关系研究[J].浙江理工大学学报,2019,41-42(自科六):818-822.
 ZHANG Chenlu,WANG Weiping.Study on the relations of some polynomial sequences related to the Riordan arrays[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):818-822.
点击复制

与Riordan阵相关的若干多项式序列的关系研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第41-42卷
期数:
2019年自科六期
页码:
818-822
栏目:
出版日期:
2019-10-31

文章信息/Info

Title:
Study on the relations of some polynomial sequences related to the Riordan arrays
文章编号:
1673-3851 (2019) 11-0818-05
作者:
张晨璐王伟平
浙江理工大学理学院,杭州 310018
Author(s):
ZHANG Chenlu WANG Weiping
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
Lucas u序列Lucas v序列Riordan阵哑复合运算
分类号:
O157-1
文献标志码:
A
摘要:
利用Riordan阵的分解及多项式序列的哑复合,研究了一些多项式序列之间的关系,涉及Lucasu序列、Lucasv序列以及与Riordan阵Tφ(t)|(1-bt-ct2)/a相关的多项式序列,进一步得到Chebyshev、Fermat、Fibonacci、Lucas、MorganVoyce、Pell等一系列经典多项式序列之间的关系,从而推广了Luzón等的工作。

参考文献/References:

[1] Shapiro L W, Getu S, Woan W J, et al. The Riordan group[J]. Discrete Applied Mathematics, 1991, 34(1/2/3): 229-239.
[2] Sprugnoli R. Riordan arrays and combinatorial sums[J]. Discrete Mathematics, 1994, 132(1/2/3): 267-290.
[3] Cheon G S,Kim H, Shapiro L W. Combinatorics of Riordan arrays with identical A and Z sequences[J]. Discrete Mathematics, 2012, 312(12/13): 2040-2049.
[4] He T X, Sprugnoli R. Sequence characterization of Riordan arrays[J]. Discrete Mathematics, 2009, 309(12): 3962-3974.
[5] Chen X, Wang Y. Notes on the total positivity of Riordan arrays[J]. Linear Algebra and its Applications, 2019, 569: 156-161.
[6] Yang S L, Dong Y N, He T X, et al. A unified approach for the Catalan matrices by using Riordan arrays[J]. Linear Algebra and its Applications, 2018, 558: 25-43.
[7] Luzón A, Morón M A. Recurrence relations for polynomial sequences via Riordan matrices[J]. Linear Algebra and Its Applications, 2010, 433(7): 1422-1446.
[8] Luzón A, Morón M A, Ramírez J L. Double parameter recurrences for polynomials in biinfinite Riordan matrices and some derived identities[J]. Linear Algebra and its Applications, 2016, 511: 237-258.
[9] Wang W P, Wang H. Some results on convolved (p, q)Fibonacci polynomials[J]. Integral Transforms and Special Functions, 2015, 26(5): 340-356.
[10] Wang W P, Wang H. Generalized Humbert polynomials via generalized Fibonacci polynomials[J]. Applied Mathematics and Computation, 2017, 307: 204-216.

备注/Memo

备注/Memo:
收稿日期:2019-04-18
网络出版日期: 2019-07-02
基金项目:国家自然科学基金项目(11671360)
作者简介:张晨璐(1994-),女,河南焦作人,硕士研究生,主要从事组合数学方面的研究
通信作者:王伟平,E-mail:wpingwang@zstu.edu.cn
更新日期/Last Update: 2019-11-25