|本期目录/Table of Contents|

[1]王苏燕,靳聪明.石墨烯SW缺陷的运动路径[J].浙江理工大学学报,2019,41-42(自科五):670-675.
 WANG Suyan,JIN Congming.Transition path of SW defect in graphene[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科五):670-675.
点击复制

石墨烯SW缺陷的运动路径()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第41-42卷
期数:
2019年自科五期
页码:
670-675
栏目:
出版日期:
2019-09-18

文章信息/Info

Title:
Transition path of SW defect in graphene
文章编号:
1673-3851 (2019) 09-0670-06
作者:
王苏燕靳聪明
浙江理工大学理学院,杭州 310018
Author(s):
WANG SuyanJIN Congming
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
石墨烯Stone Wales缺陷NEB方法最小能量路径
分类号:
O242-1
文献标志码:
A
摘要:
为分析石墨烯中的缺陷对其物理性能的影响,在原子尺度上研究了石墨烯中Stone Wales(SW)缺陷的两种主要运动:一种是从完美状态到有一个SW缺陷的稳定状态的生成过程;另一种是在一个SW缺陷的稳定状态中SW缺陷位置的变化过程。利用Nudged elastic band(NEB)方法得到SW缺陷生成路径、势垒和过渡态。另外用NEB方法模拟了SW缺陷的位置变化过程,并得到了该运动过程的过渡态的原子结构图像。模拟结果显示:SW缺陷的运动发生概率很小,要先变为完美状态,即先湮灭,再重新生成。

参考文献/References:

[1] Carpio A, Bonilla L L, Juan F D, et al. Dislocations in graphene[J]. New Journal of Physics, 2008, 10(5):53021.
[2] Wang S F, Yao Y, Wang R. A lattice theory of the StoneWales defect as dipole of dislocation and antidislocation[J]. The European Physical Journal B, 2015, 88(9):226.
[3] Kim D, Kim Y, Ihm J, et al. Atomicscale mechanism of grain boundary motion in graphene[J]. Carbon, 2015, 84:146-150.
[4] Podlivaev A I, Openov L A. Outofplane path of the Stone–Wales transformation in graphene[J]. Physics Letters A, 2015, 379(30/31):1757-1761.
[5] Openov L A, Podlivaev A I. Realtime evolution of the buckled StoneWales defect in graphene[J]. Physica E: LowDimensional Systems and Nanostructures, 2015, 70:165-169.
[6] Cranford S W. When is 6 less than 5? Penta to hexagraphene transition[J]. Carbon, 2016, 96:421-428.
[7] Katin K P, Maslov M M. StoneWales defects in nitrogendoped C20 fullerenes: Insight from ab initio calculations[J]. Physica E: LowDimensional Systems and Nanostructures, 2018, 96:6-10.
[8] 贾红霞, 靳聪明. String方法在丙氨酸多肽链中的应用[J]. 浙江理工大学学报, 2016, 35(2):297-303.
[9] Ma N, Chung Y H, Arjan V D V. Free energy simulation of helical transitions[J]. Journal of Computational Chemistry, 2013, 34(8):640-645.
[10] Mathews D H, Case D A. Nudged elastic band calculation of minimal energy paths for the conformational change of a GG noncanonical pair[J]. Journal of Molecular Biology, 2006, 357(5):1683-1693.

相似文献/References:

[1]赵晓凤,郑兵,杨逢春,等.原位聚合制备石墨烯/PET及其性能研究[J].浙江理工大学学报,2017,37-38(自科4):497.
 ZHAO Xiaofeng,ZHENG Bing,YANG fengchun,et al.Preparation of Graphene/PET by inSitu Polycondensationand Study on Its Properties[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科五):497.
[2]李朝利,汪进前,盖燕芳,等.石墨烯/棉织物导电复合材料的制备、表征及应用[J].浙江理工大学学报,2020,43-44(自科一):1.
 LI Zhaolia,WANG Jinqiana,GE Yanfangb,et al.Preparation, characterization and application of  graphene/cotton fabric conductive composites[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科五):1.
[3]房国庆,何雨昕,季善鹏,等.激光诱导石墨烯基柔性应变传感器的传感行为分析[J].浙江理工大学学报,2023,49-50(自科一):9.
 FANG Guoqing,HE Yuxin,JI Shanpeng,et al.Analysis of sensing behavior of laser-nduced graphene-based flexible strain sensor[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科五):9.
[4]黄红,郑莹莹,蒋仲庆.氮掺杂中空石墨烯球负载Pt催化剂的制备及其电化学性能[J].浙江理工大学学报,2023,49-50(自科一):59.
 HUANG Hong,ZHENG Yingying,JIANG Zhongqing.Preparation and electrochemical performance of Pt supported N doping graphene hollow spheres[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科五):59.
[5]王刚,杨雷,周青,等.基于rGO@PMMA/PBA复合乳胶膜的电容式非接触传感器制备与性能分析[J].浙江理工大学学报,2023,49-50(自科二):219.
 WANG Gang,YANG Lei,ZHOU Qing,et al.Preparation and properties of capacitive proximity sensors  based on rGO@PMMA/PBA composite latex film Preparation and properties analysis of capacitive proximity sensors based on rGO@PMMA/PBA compositel atex film[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科五):219.

备注/Memo

备注/Memo:
收稿日期:2019-03-18
网络出版日期: 2019-06-04
基金项目:国家自然科学基金项目(11571314)
作者简介:王苏燕(1993-),女,安徽合肥人,硕士研究生,主要从事分子模拟方面的研究
通信作者:靳聪明,E-mail:jincm@lsec.cc.ac.cn
更新日期/Last Update: 2019-09-18