|本期目录/Table of Contents|

[1]程诚,任佳.基于自适应卷积核的改进CNN数值型数据分类算法[J].浙江理工大学学报,2019,41-42(自科五):657-664.
 CHENG Cheng,REN Jia.Improved CNN classification algorithm based on adaptive convolution kernel for numerical data[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科五):657-664.
点击复制

基于自适应卷积核的改进CNN数值型数据分类算法()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第41-42卷
期数:
2019年自科五期
页码:
657-664
栏目:
出版日期:
2019-09-18

文章信息/Info

Title:
Improved CNN classification algorithm based on adaptive convolution kernel for numerical data
文章编号:
1673-3851 (2019) 09-0657-08
作者:
程诚任佳
浙江理工大学机械与自动控制学院,杭州310018
Author(s):
CHENG ChengREN Jia
Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
卷积神经网络数值型数据自适应卷积核网格搜索
分类号:
TP181
文献标志码:
A
摘要:
针对卷积神经网络(Convolutional neural network,CNN)模型在对工业数值型数据分类方面存在特征使用不充分、模型分类性能不佳等问题,提出了一种基于自适应卷积核的改进CNN(Improved CNN based on adaptive convolution kernel, ACKICNN)算法。该算法为了增加特征的重复使用率,构建了一种多尺度卷积核的模型结构,通过融合处理卷积核提取的不同特征来实现,增强了模型的适应能力;为了进一步提升该算法的性能,利用网格搜索算法自适应选取CNN中最优的卷积核大小,使得模型能够提取出最优的特征。采用TE过程的故障数据对其进行测试,并与支持向量机、极限学习机、最近邻等典型的数据驱动方法进行对比,测试结果表明,该算法能有效提升各类故障的分类精度。

参考文献/References:

[1] Lecun Y L, Bottou L, Bengio Y, et al. Gradientbased learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[2] Krizhevsky A, Sutskever I, Hinton G. Image Net classification with deep convolutional neural networks[C]//In Advances in Neural Information Processing Systems 25. Lake Tahoe: Curran Associates Inc,2012:1106-1114.[3] Szegedt C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Boston.IEEE, 2015: 1-9.
[4] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas.IEEE, 2016: 770-778.
[5] 任浩, 屈剑锋, 柴毅,等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8):1345-1358.
[6] 刘涵, 郭润元. 基于X射线图像和卷积神经网络的石油钢管焊缝缺陷检测与识别[J]. 仪器仪表学报, 2018, 39(4):247-256.
[7] Yan H, Baoping T, Lei D. Multilevel wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis[J]. Measurement, 2018, 127:246-255.
[8] Jia F, Lei Y, Lu N, et al. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization[J]. Mechanical Systems & Signal Processing, 2018, 110:349-367.
[9] 林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2015, 43(16):87-94.
[10] Jeong H, Park S, Woo S, et al. Rotating machinery diagnostics using deep learning on orbit plot images[J]. Procedia Manufacturing, 2016, 5: 1107-1118.

相似文献/References:

[1]李斯凡,高法钦.基于卷积神经网络的手写数字识别[J].浙江理工大学学报,2017,37-38(自科3):438.
 LI Sifan,GAO Faqin.Handwritten Numeral Recognition Based on Convolution Neural Network[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科五):438.
[2]张玮,张华熊.基于卷积神经网络的纺织面料主成分分类[J].浙江理工大学学报,2019,41-42(自科一):1.
 ZHANG Wei,ZHANG Huaxiong.Classification of main components of textile fabrics based on convolutional neural network[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科五):1.
[3]邓远远,沈炜.基于注意力反馈机制的深度图像标注模型[J].浙江理工大学学报,2019,41-42(自科二):208.
 DENG Yuanyuan,SHEN Wei.Depth image caption model based on  attention feedback mechanism[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科五):208.
[4]邓远远,沈炜.基于注意力反馈机制的深度图像标注模型[J].浙江理工大学学报,2019,41-42(自科二):208.
 DENG Yuanyuan,SHEN Wei.Depth image caption model based on attention feedback mechanism[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科五):208.
[5]陈巧红,董雯,孙麒,等.基于混合神经网络的单文档自动文摘模型[J].浙江理工大学学报,2019,41-42(自科四):489.
 CHEN Qiaohong,DONG Wen,SUN Qi,et al.Single document automatic summarization model based on hybrid neural network[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科五):489.
[6]陈巧红,王磊,孙麒,等.基于混合神经网络的中文短文本分类模型[J].浙江理工大学学报,2019,41-42(自科四):509.
 CHEN Qiaohong,WANG Lei,SUN Qi,et al.Chinese short text classification model based on hybrid neural network[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科五):509.
[7]田秋红,孙文轩,章立早,等.基于改进GhostNet的轻量级手势图像识别方法[J].浙江理工大学学报,2023,49-50(自科三):300.
 TIAN Qiuhong,SUN Wenxuan,ZHANG Lizao,et al.Lightweight gesture image recognition method  based on improved GhostNet[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科五):300.
[8]祝鹏烜,黄体仁,李旭.MSAG-TransNet:肺部CT图像中新冠肺炎感染新型冠状病毒感染区域的分割模型[J].浙江理工大学学报,2023,49-50(自科六):734.
 ZHU Pengxuan,HUANG Tiren,LI Xu.MSAG-TransNet: Segmentation model of COVID-19 infected areas in lung CT images[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科五):734.

备注/Memo

备注/Memo:
收稿日期:2018-12-17
网络出版日期: 2019-02-28
基金项目:国家自然科学基金项目(61203177);浙江省自然科学基金项目(LY17F030024)
作者简介:程诚(1993-),男,安徽阜阳人,硕士研究生,主要从事软测量建模方面的研究
通信作者:任佳,E-mail:jren@zstu.edu.cn
更新日期/Last Update: 2019-09-18