[1] 王国霞,刘贺平.个性化推荐系统综述[J].计算机工程与应用,2012,48(7):66-76.
[2] 刘平峰,陈冬林.电子商务推荐系统研究综述[J].情报杂志,2007,26(9):46-50.
[3] Ricci F, Rokach L, Shapira B, et al. Recommender Systems Handbook[M]. Springer,2011:1-35.
[4] Shang M, Lu L, Zhang Y C, et al. Empirical analysis of webbased userobject bipartite networks[J]. Europhysics Letters,2012,90(4):1303-1324.
[5] Purushotham S, Liu Y, Kuo C. Collaborative topic regression with social matrix factorization for recommendation systems[C]// International Conference on International Conference on Machine Learning. Omnipress. 2012:691-698.
[6] Mcauley J, Leskovec J. Hidden factors and hidden topics: Understanding rating dimensions with review text[C]// ACM Conference on Recommender Systems. ACM, 2013:165-172.
[7] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer,2009,42(8):30-37.
[8] Bao Y, Fang H, Zhang J. Topic M F: Simultaneously exploiting ratings and reviews for recommendation[C]// TwentyEighth AAAI Conference on Artificial Intelligence. AAAI Press,2014:2-8.
[9] Ling G, Lyu M R, King I. Ratings meet reviews, a combined approach to recommend[C]// Proceedings of the 8th ACM conference on recommender systems. ACM,2014:105-112.
[10] 彭敏,席俊杰,代心媛,等.基于情感分析和LDA主题模型的协同过滤推荐算法[J].中文信息学报,2017,31(2):194-203.