|本期目录/Table of Contents|

[1]李飞翔,徐定华.稀浓度下铁系催化剂制备过程介尺度建模与计算[J].浙江理工大学学报,2018,39-40(自科6):776-780.
 LI Feixiang,XU Dinghua.Mesoscale modeling and computation for ironbased catalyst preparation process in dilute concentration[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科6):776-780.
点击复制

稀浓度下铁系催化剂制备过程介尺度建模与计算()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第39-40卷
期数:
2018年自科6期
页码:
776-780
栏目:
出版日期:
2018-11-10

文章信息/Info

Title:
Mesoscale modeling and computation for ironbased catalyst preparation process in dilute concentration
文章编号:
1673-3851 (2018) 11-0776-05
作者:
李飞翔徐定华
浙江理工大学理学院,杭州 310018
Author(s):
LI Feixiang XU Dinghua
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
耦合抛物型方程介尺度过程有限差分法成核率晶核生长速率
分类号:
O242.1
文献标志码:
A
摘要:
由成核率和生长速率决定的结晶过程建模是铁系催化剂制备研究中的一个关键的数学问题。根据微观尺度上的随机过程和宏观尺度上的热扩散规律,建立了催化剂制备过程中的宏微观耦合的介尺度热扩散模型;在空间三维上,结合因果锥,采用有限差分法求解该模型。给出数值算例,并与化学实验结果进行比较,结果显示该数值算法有效,验证了介尺度模型的合理性。

参考文献/References:

[1] Cui X J, Xu J, Zhang C H, et al. Effect of pretreatment on precipitated FeMo FischerTropsch catalysts: Morphology, carburization, and catalytic performance[J]. Journal of Catalysis,2011,282(1):35-46.
[2] Shiryayev A N. Selected Works of A. N. Kolmogorov[M]. Netherlands: Springer,1992:188-192.
[3] Johnson W, Mehl R. Reaction kinetics in processes of nucleation and growth[J]. Transaction of American  Institute of Mining, Metallurgical, and Petroleum Engineers,1939,135:416-442.
[4] Avrami M. Kinetics of phase change. I general theory[J]. Journal of Chemical Physics,2004,7(12):1103-1112.
[5] Avrami M. Granulation, phase change and microstructure kinetics of phase change. III[J]. Journal of Chemical Physics,1941,9(2):177-184.
[6] Cahn J W. The time cone method for nucleation and growth kinetics on a finite domain[J]. Material Research Society Symposium Proceeding,1995,398:425-437.
[7] Burger M, Capasso V, Eder G. Modeling of polymer crystallization in temperature fields[J]. ZAMM Journal  of  Applied Mathematics and Mechanics,2002,82(1):51-63.
[8] Burger M, Capasso V. Mathematical modeling and simulation of nonisothermal crystallization of polymers[J]. Mathematical Models & Methods in Applied Sciences,2001,11(6):1029-1053.
[9] Burger M, Capasso V, Engl H W. Inverse problems related to crystallization of polymers[J]. Inverse Problems,2000,15(1):155-173.
[10] Capasso V, Engl H W, Kindermann S. Parameter identification in a random environment exemplified by a multiscale model for crystal growth[J]. SIAM Journal on Multiscale Modeling and Simulation,2008,7(2):814-841.

相似文献/References:

[1]赵倩雯,徐映红,徐定华.沉淀法制备催化剂介尺度过程CA模型与数值模拟[J].浙江理工大学学报,2019,41-42(自科二):262.
 ZHAO Qianwen,XU Yinghong,XU Dinghua.CA model and numerical simulation of mesoscale process for  catalyst preparation by precipitation method[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科6):262.

备注/Memo

备注/Memo:
收稿日期: 2018-07-02
网络出版日期: 2018-09-03
基金项目: 国家自然科学基金重大研究计划项目(91534113)
作者简介: 李飞翔(1990-),男,安徽宿州人,硕士研究生,主要从事反问题理论及应用方面的研究
通信作者: 徐定华,E-mail:dhxu6708@zstu.edu.cn
更新日期/Last Update: 2018-11-14