|本期目录/Table of Contents|

[1]李晓军,戴文战,李俊峰.结合稀疏理论与非下采样剪切波变换的多模态医学图像融合算法[J].浙江理工大学学报,2018,39-40(自科6):723-731.
 LI Xiaojun,DAI Wenzhan,LI Junfeng.Multimodality medical image fusion algorithm combined with sparse theory and nonsubsampled shearlet transform[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科6):723-731.
点击复制

结合稀疏理论与非下采样剪切波变换的多模态医学图像融合算法()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第39-40卷
期数:
2018年自科6期
页码:
723-731
栏目:
出版日期:
2018-11-10

文章信息/Info

Title:
Multimodality medical image fusion algorithm combined with sparse theory and nonsubsampled shearlet transform
文章编号:
1673-3851 (2018) 11-0723-09
作者:
李晓军戴文战李俊峰
1.浙江理工大学机械与自动控制学院,杭州 310018;2.浙江工商大学信息与电子工程学院,杭州 310018
Author(s):
LI Xiaojun DAI Wenzhan LI Junfeng
1.Faculty of Mechanical Engineering & Automation , Zhejiang Sci-Tech University, Hangzhou 310018, China;2.School of Information and Electronic ,Zhejiang Gongshang University, Hangzhou 310018, China
关键词:
图像融合稀疏理论NSST变换相对标准差比较法
分类号:
TP391.4
文献标志码:
A
摘要:
针对医学图像时常存在局部信息丢失、细节模糊不清等问题,为提高可视化效果,避免医疗误诊,提出了一种新的非下采样剪切波变换(NSST)算法。首先,利用NSST分解源图像得到高频子带系数与低频子带系数;其次,根据高低频子带系数的不同特性制定不同的融合策略,对稀疏性不佳的低频系数采用稀疏理论进行处理,反映图像细节信息的高频子带通过相对标准差比较法(RSDC)进行处理;最后,将融合后的高低频子带系数通过NSST重构得到最终的融合图像。从定性和定量角度来评价融合后的图像,算法融合效果良好,与其它5种算法比较发现:该算法在标准差、边缘信息评价因子等指标上表现较好,其余指标均处于中上水平。实验结果表明,该算法得到的融合图像在信息丰富性、对比度、清晰度等方面表现较好,有效增加了不同模态之间的互补信息,具有较好的应用前景。

参考文献/References:

[1] Rahman S M M, Ahmad M O, Swamy M N S. Contrastbased fusion of noisy images using discrete wavelet transform[J]. Image Processing Let,2010,4(5):374-384.
[2] Shen R, Cheng I, Basu A. Crossscale coefficient selection for volumetric medical image fusion[J]. IEEE Transactions on Biomedical Engineering,2013,60(4):1069-1079.
[3] Jiang Z T, Yang Y, Guo C. Study on the improvement of image fusion algorithm based on lifting wavelet transform[J]. Journal of Image and Signal Processing,2015,4(2):11-19.
[4] Da C A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: Theory, design, and applications[J]. IEEE Transactions on Image Processing,2006,15(10):3089-3101.
[5] Liu X, Zhou Y, Wang J J. Image fusion based on  shearlet transform and regional features[J]. International  Journal of Electronics and Communications,2014,68(6):471-477.
[6] Luo X Q, Zhang Z C, Zhang B C, et al. Image fusion with contextual statistical similarity and nonsubsampled shearlet transform[J]. IEEE Sensors Journal,2017,17(6):1760-1771.
[7] Cao Y, Li S T, Hu J W. Multifocus image fusion by  nonsubsampled shearlet transform[J]. Sixth International Conference on Image & Graphics,2011:17-21.
[8] Padma G, Vinod K. Featuremotivated simplified adaptive PCNNBased medical image fusion algorithm in NSST domain[J]. Journal of Digital Imaging,2016,1(29):73-85.
[9] Yu N, Qiu T, Bi F, et al. Image features extraction and fusion based on joint sparse representation[J]. IEEE Journal of Selected Topics in Signal Processing,2011,5(5):1074-1082.
[10] Shahdoosti H R, Khayat O. Image denoising using sparse representation classification and nonsubsampled  shearlettransform[J]. Signal Image and Video Processing,2016,10(6):1081-1087.

备注/Memo

备注/Memo:
收稿日期: 2018-06-08
网络出版日期: 2018-09-04
基金项目: 国家自然科学基金项目(61374022)
作者简介: 李晓军(1992-),男,江苏南京人,硕士研究生,主要从事医学图像融合方面的研究
通信作者: 戴文战,E-mail: dwz@ zjsu.edu.cn
更新日期/Last Update: 2018-11-09