[1] 刘鹏,王超.计算广告[M].北京:人民邮电出版社,2015:24-24.
[2] 刘庆振.计算广告学:大数据时代的广告传播变革:以“互联网+”技术经济范式的视角[J].现代经济探讨,2016(2):87-91.
[3] Dave K S, Varma V. Learning the clickthrough rate for rare/new ads from similar ads[C]// International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM,2010:897-898.
[4] Oentaryo R J, Lim E P, Low J W, et al. Predicting response in mobile advertising with hierarchical importanceaware factorization machine[C]// ACM International Conference on Web Search and Data Mining. ACM,2014:123-132.
[5] Zhu W Y, Wang C H, Shih W Y, et al. SEM: A softmaxbased ensemble model for CTR estimation in realtime bidding advertising[C]// IEEE International Conference on Big Data and Smart Computing. IEEE,2017:5-12.[6] Chapelle O, Zhang Y. A dynamic bayesian network click model for web search ranking[C]// International Conference on World Wide Web. ACM,2009:1-10.
[7] Zhang Y, Dai H, Xu C, et al. Sequential click prediction for sponsored search with recurrent neural networks[C]// TwentyEighth AAAI Conference on Artificial Intelligence. AAAI Press,2014:1369-1375.
[8] Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures[C]// International Conference on International Conference on Machine Learning. JMLR.org,2015:2342-2350.
[9] Tjandra A, Sakti S, Manurung R, et al. Gated recurrent neural tensor network[C]// International Joint Conference on Neural Networks. IEEE,2016:448-455.
[10] Zhou G B, Wu J, Zhang C L, et al. Minimal gated unit for recurrent neural networks[J]. International Journal of Automation and Computing,2016,13(3):226-234.