[1] NAKAO M, ONO K. Existence of global solutions to the cauchy problem for the semilinear dissipative wave equations[J]. Mathematische Zeitschrift,1993,214(1):325-342.
[2] LI T T, ZHOU Y. Breakdown of solutions to u+ut=u 1+α [J]. Discrete and Continuous Dynamical Systems 1,1995,503-520.
[3] NISHIHARA K. Lp-Lq estimates of solutions to the damped wave equation in 3\|dimensional space and their application[J]. Mathematische Zeitschrift,2003,244(3):631-649.
[4] TODOROVA G, YORDANOV Y. Critical exponent for a nonlinear wave equation with damping[J]. Journal of Differential Equations,2001,174:464-489.
[5] FUJITA H. On the blowing up of solutions of the cauchy problem for u t =Δu+u1+α [J]. Journal of the Faculty of Science, the University of Tokyo: Sect. 1 A, Mathematics,1966,13:109-124.
[6] ZHANG Q S. A blowup result for a nonlinear wave equation with damping: The critical case[J]. Comptes Rendus De Lacademie Des Sciences,2001,333(2):109-114.
[7] LAI N A, ZHOU Y. The sharp lifespan estimate for semilinear damped wave equation with Fujita critical power in high dimensions. (2017-02-23)[2017-04-02]. https://arxiv.org/abs/1702.07073?context=math.
[8] LAI N A, TAKAMURA H, WAKASA K. Blowup for semilinear wave equations with the scale invariant damping and super Fujita exponent
[1]杨姗姗,蒋红标.一类半线性波动方程Cauchy问题破裂的新证法[J].浙江理工大学学报,2020,43-44(自科三):368.
RAN Lixia,CHEN Yong.Large deviation principle of stochastically modified CamassaHolm equation[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科4):368.