|本期目录/Table of Contents|

[1]韩美佳,黄土森.拟齐次平面多项式系统的逆积分因子[J].浙江理工大学学报,2016,35-36(自科6):939-944.
 HAN Meijia,HUANG Tusen.Inverse Integrating Factors of QuasiHomogeneous Planar Polynomial Systems[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科6):939-944.
点击复制

拟齐次平面多项式系统的逆积分因子()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第35-36卷
期数:
2016年自科6期
页码:
939-944
栏目:
出版日期:
2016-11-10

文章信息/Info

Title:
Inverse Integrating Factors of QuasiHomogeneous Planar Polynomial Systems
文章编号:
1673-3851 (2016) 06-0939-06
作者:
韩美佳黄土森
浙江理工大学理学院,杭州 310018
Author(s):
HAN Meijia HUANG Tusen
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
拟齐次多项式系统多项式逆积分因子拟齐次分解
分类号:
O175.14
文献标志码:
A
摘要:
逆积分因子是研究平面多项式系统可积性问题的重要工具。对于拟齐次多项式系统,利用广义Euler定理证明了它一定存在多项式逆积分因子,并给出了具体表达式;对于由两个拟齐次多项式系统的和所定义的多项式系统,给出存在多项式逆积分因子的一个充分条件,并由此给出几类特殊多项式系统的逆积分因子的计算公式。给出的几个多项式逆积分因子计算例子表明这些结论推广了已有成果。

参考文献/References:

[1] CHAVARRIGA J, GIACOMINI H, GINE J, et al. On the integrability of twodimensional flows[J]. Journal of Differential Equations,1999,157(1):163-182.
[2] GIACOMINI H, LLIBREZ J, VIANO M. On the nonexistence, existence and uniqueness of limit cycles[J]. Nonlinearity,1996,9(2):501-516.
[3] BERRONE L R, GIACOMINI H. On the vanishing set of inverse integrating factors[J]. Qualitative Theory of Dynamical Systems,2000,1(2):211-230.
[4] GIACOMINI H, VIANO M. Determination of limit cycles for twodimensional dynamical systems[J]. Physical Review E,1995,52(1):222-228.
[5] CHAVARRIGA J, GIACOMINI H, GINE J, et al. Darboux integrability and the inverse integrating factor[J]. Journal of Differential Equations,2003,194(1):116-139.
[6] GINE J. The nondegenerate center problem and the inverse integrating factor[J]. Bulletin Des Sciences Mathématimatiques,2006,130(2):152-161.
[7] GINE J. On the centers of planar analytic differential systems[J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,2007,17(9):3061-3070.
[8] GINE J, LLIBRE J. Integrability and algebraic limit cycles for polynomial differential systems with homogeneous nonlinearities[J]. Journal of Differential Equations,2005,197(2):531-545.
[9] GARCIA I A, GRAU M. A survey on the inverse integrating factor[J]. Qualitative Theory of Dynamical Systems,2010,9(1):115-166.
[10] CHAVARRIGA J. Integrable systems in the plane with a center type linear part[J]. Applicationes Mathematicae,1994,22(2):285-309.

备注/Memo

备注/Memo:
收稿日期: 2016-03-02
基金项目: 浙江省自然科学基金项目(LY15A010021)
作者简介: 韩美佳(1992-),女,山东青岛人,硕士研究生,主要从事微分方程定性理论方面的研究
更新日期/Last Update: 2016-11-22