|本期目录/Table of Contents|

[1]周小颖,窦华书,陈小平.电除尘器电流体动力学流动与极间干扰的数值模拟研究[J].浙江理工大学学报,2016,35-36(自科5):734-741.
 ZHOU Xiaoying,DOU Huashu,CHEN Xiaoping.Numerical Simulation Research on Electro Hydrodynamics Flow and  Interelectrode Interference of Electric Precipitator[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科5):734-741.
点击复制

电除尘器电流体动力学流动与极间干扰的数值模拟研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第35-36卷
期数:
2016年自科5期
页码:
734-741
栏目:
出版日期:
2016-09-10

文章信息/Info

Title:
Numerical Simulation Research on Electro Hydrodynamics Flow and  Interelectrode Interference of Electric Precipitator
文章编号:
1673-3851 (2016) 05-0734-08
作者:
周小颖窦华书陈小平
浙江理工大学机械与自动控制学院,杭州 310018
Author(s):
ZHOU Xiaoying DOU Huashu CHEN Xiaoping
Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech  University, Hangzhou 310018, China
关键词:
电除尘器收集效率电流体力学电场力
分类号:
O442
文献标志码:
A
摘要:
对单电极和多电极电除尘器内部流动建立了三维数值模型,研究了电流体动力学(EHD)流和极间干扰对电除尘器内部流动特性的影响。电场分布由泊松方程和电流连续性方程控制,气体流动由三维不可压缩的NavierStokes方程结合标准kε湍流模型来描述,气体流动和电场通过库仑力耦合计算。模拟结果显示:EHD流使得电极前后分别形成两个对称的涡,随着气流进口速度的提高,上下涡核朝相反的方向移动;EHD流通过同时提高湍流耗散率和湍动能的生成来影响湍流强度,其结果取决于哪个作用占优势。结果发现:电极之间会产生极间干扰,中间电极前后由于电势和空间电荷密度分布的挤压作用使得涡强度明显减小,并且结构更规则。

参考文献/References:

[1] GUO B Y, YANG S Y, XING M, et al. Toward the development of an integrated multiscale model for electrostatic precipitation [J]. Industrial and Engineering Chemistry Research,2013,52(33):11282-11293.
[2] LIU Q, ZHANG S S, CHEN J P. Numerical analysis of charged particle collection in wireplate ESP [J]. Journal of Electrostatics,2015,74:56-65.
[3] ADAMIAK K. Numerical models in simulating wireplate electrostatic precipitators: a review [J]. Journal of Electrostatic,2013,71:673-680.
[4] FARNOOSH N, ADAMIAK K, CASTLE G S P. Threedimensional analysis of electrohydrodynamic flow in a spiked electrodeplate electrostatic precipitator [J]. Journal of Electrostatics,2011,69(5):419-428.
[5] ZHAO L, ADAMIAK K. Effects of EHD and external air flows on electric corona discharge in pinplate configuration [C]// 2005 IEEE Industry Applications Conference. Hong Kong: IAS,2005:2584-2589.
[6] PODLINSKI J, NIEWULIS A, MIZERACZYK J, et al. ESP performance for various dust densities [J]. Journal of Electrostatic,2008,66(5/6):246-253
[7] CHANG J S, DEKOWSKI J, PODLINSKI J, et al. Electrohydrodynamic gas flow regime map in a wireplate electrostatic precipitator [C]//2005 IEEE Industry Applications Conference. IEEE,2005:2597-2600.
[8] LEONARD G L, MITCHNERA M, SELF S A. An experimental study of the electrohydrodynamic flow in electrostatic precipitators [J]. Journal of Fluid Mechanics,1983,127:123-140
[9] BOTTNER C U. The role of the space charge density in particulate processes in the example of the electrostatic precipitator [J]. Powder Technology,2003,135/136:285-294.
[10] FARNOOSH N, ADAMIAK K, CASTLE G S P. 3D numerical analysis of EHD turbulent flow and monodisperse charged particle transport and collection in a wireplate ESP [J]. Journal of Electrostatics,2010,68(6):513-522.
[11] GAJBHIRA N, ESWARAN V, SAHA A K, et al. Numerical calculation of particle collection efficiency in an electrostatic precipitator [J]. Indian Academy of Sciences,2015,40(3):863-873.
[12] AIT S H, NOURI H, ZEBBOUDJ Y. Effect of air flow on corona discharge in wiretoplate electrostatic precipitator [J]. Journal of Electrostatics,2015,73:19-25.
[13] NIEWULIS A, BERENDT A, PODLINSKI J, et al. Electrohydrodynamic flow patterns and collection efficiency in narrow wirecylinder type electrostatic precipitator [J]. Journal of Electrostatics,2013,71(4):808-814.
[14] CHUDINOV A V, MARTYNOVICH Y G, SULIMENKOV I V, et al. Study of electrospray ion mobility dependence on the ion bunch drift velocity in the radio frequency quadrupole [J]. Journal of Analytical Chemistry,2014,69(13):1220-1228.
[15] WHITE F M. Viscous Fluid Flow [M]. Boston: McGraw Hill, Third Edition,2006:62-64.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金项目(51579224)
作者简介: 周小颖(1991-),女,四川成都人,硕士研究生,主要从事流体机械方面的研究
通信作者: 窦华书,E-mail: huashudou@yahoo.com
更新日期/Last Update: 2016-10-12