[1] 李永海. 解双调和方程的一种混合广义差分法[J]. 吉林大学自然科学学报, 1993(3): 19-30.
[2] CHEN G, LI Z, LIN P. A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow[J]. Advances in Computational Mathematics, 2008, 29(2): 113-133.[3] WANG C M, WANG J P. An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes[J]. Computers and Mathematics with Applications, 2014, 68: 2314- 2330.
[4]WANG T. A mixed finite volume element method based on rectangular mesh for biharmonic equations [J]. Journal of Computational and Applied Mathematics, 2004, 172: 117 -130.
[5] 温希重, 李荣华. 求解平面双调和方程边界元法的误差分析[J]. 高等学校计算数学学报, 1988, 4: 298 -310.
[6] LI M, JIANG T S, HON Y C. A meshless method based on RBFs method for nonhomogeneous backward heat conduction problem [J]. Engineering Analysis with Boundary Elements, 2010, 34: 785 -792.
[7] LI M, CHEN C S, HON Y C. A meshless method for solving nonhomogeneous Cauchy problems[J]. Engineering Analysis with Boundary Elements, 2011, 35: 499-506.
[8] HON Y C, YANG Z. Meshless collocation method by Delta shaped basis functions for default barrier model[J]. Engineering analysis with boundary elements, 2009, 33(7): 951-958.
[9] WEN P H, HON Y C, LI M, et al. Finite integration method for partial differential equations[J]. Applied Mathematical Modelling, 2013, 37(24): 10092-10106.
[10]DUAN Y, ZHENG Y M, CENG P P. Convergence estimate of the RBF based meshless method for initial boundary value problem of wave equations[J]. Engineering Analysis with Boundary Elements, 2012, 36(3): 303-309.
[11] HACKBUSCH W. Elliptic Differential Equations:Theory and Numerical Treatment[M]. Verlag Berlin Heidelberg : Springer, 1992: 103-109.
[12] NARCOWICH F J. Recent developments in error estimates for scattereddata interpolation via radial basis functions [J]. Numerical Algorithms, 2005, 39(1/3): 307-315.
[13] 刘继军, 不适定问题的正则化方法及应用[M]. 北京:科学出版社, 2005: 46-55.
[14] 徐芝纶. 弹性力学: 下册[M]. 四版, 北京:高等教育出版社, 2006: 1-41.