[1] 李敏. 计算广告学将成为数字商业的奠基学科[J]. 程序员, 2014 (5): 109-109.
[2] 周傲英, 周敏奇, 宫学庆.计算广告:以数据为核心的Web综合利用[J].计算机学报,2011,34(10):1805-1891.
[3] 纪文迪, 王晓玲, 周傲英. 广告点击率估算技术综述[J]. 华东师范大学学报: 自然科学版, 2013 (3): 2-14.
[4] Richardson M, Dominowska E, Ragno R. Predicting clicks: estimating the clickthrough rate for new ads[C]//Proceedings of the 16th International Conference on World Wide Web. ACM, 2007: 521-530.
[5] Joachims T. Optimizing search engines using clickthrough data[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2002: 133-142.
[6] Chapelle O, Zhang Y. A dynamic bayesian network click model for web search ranking[C]//Proceedings of the 18th International Conference on World Wide Web. ACM, 2009: 1-10.
[7] Guo F, Liu C, Kannan A, et al. Click chain model in web search[C]//Proceedings of the 18th International Conference on World Wide Web. ACM, 2009: 11-20.
[8] Graepel T, Candela J Q, Borchert T, et al. Webscale bayesian clickthrough rate prediction for sponsored search advertising in microsoft’s bing search engine[C]//Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010: 13-20.
[9] Dupret G E, Piwowarski B. A user browsing model to predict search engine click data from past observations[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2008: 331-338.
[10] Zhang Y, Dai H, Xu C, et al. Sequential click prediction for sponsored search with recurrent neural networks[J]. AAAI, 2014:1369-1375.
[1]陈巧红,孙超红,余仕敏,等.基于递归神经网络的广告点击率预估研究[J].浙江理工大学学报,2016,35-36(自科6):880.
CHEN Qiaohong,SUN Chaohong,YU Shimin,et al.Research on Estimation of Ads Click Rate Based on Recurrent Neural Network[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科6):880.