[1] Duff R E. Shock tube performance at initial low pressure [J]. Phys Fluids,1959,2(1):207-216.
[2] Ngomo D, Chaudhuri A, Chinnayya A, et al. Numerical study of shock propagation and attenuation in narrow tubes including friction and heat losses [J]. Computers & Fluids,2010,39(9):1711-1721.
[3] Xiao H, Toshiyuki A, Naoya T. The feature of weak shock wave propagated in an overlong tunnel [J]. Open Journal of Fluid Dynamics,2012,2(4):285-289.
[4] Mirshekari G, Brouillette M. Onedimensional model for microscale shock tube flow [J]. Shock Waves, 2009, 19 (1): 25-38.
[5] Watvisave D S, Bhandarkar U V, Puranik B P. Effects of wall conduction and rarefaction on shock propagation in a microchannel [J]. Shock Waves,2014,24(3):295-306.
[6] Huynh D. The shock tube problem from a combined experimental and computational perspective [C]∥21th AIAA Computational Fluid Dynamics Conference. San Diego, California, USA,2013,3:2442-2458.
[7] Sturtevant B, Okamura T T. Dependence of shock tube boundary layers on shock strength [J]. Phys Fluids,1969,12(8):1723-1725.
[8] Tanaki K, Inaba K, Yamamoto M. Numerical investigation on transition of shock induced boundary layer [C]∥47th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, 2009:5-8.
[9] Mirels H. Test time in low pressure shock tubes [J]. Phys Fluids,1963,6(9):1201-1214.
[10] Roshko A. On flow duration in low pressure shock tubes [J]. Phys Fluids,1960,3(6):835-842.
[11] Brouillete M. Shock waves at microscales [J]. Shock Waves,2003,13(1):3-12.
[12] Park J O, Kim G W, Kim H D. Experimental study of the shock wave dynamics in micro shock tube [J]. Journal of the Korean Society of Propulsion Engineers,2014,17(5):54-59.
[13] Sun M, Ogawa T, Takayama K. Shock propagation in narrow channels [C]∥ Processing of 24th International Symposium on Shock Waves. Tohoku University, Katahira, Japan,2001:1321-1327.
[14] Zeitoun D E. Microsize and initial pressure effects on shock wave propagation in a tube [J]. Shock Waves,2014,24(5):515-520.
[15] Zeitoun D E, Burtschell Y. NavierStokes computations in micro shock tubes [J]. Shock Waves,2006,15(3):241-246.
[1]张苹,亓洪训,章利特,等. 激波驱动颗粒群加速效果优化的实验研究[J].浙江理工大学学报,2013,30(01):71.
ZHANG Ping,QI Hong xun,ZHANG Li te,et al. Experimental Investigation on Optimizing the Effect of Particles Acceleration Driven by Shock Waves[J].Journal of Zhejiang Sci-Tech University,2013,30(自科6):71.
[2]肖毅,施红辉,吴宇,等.激波与液滴作用的空气动力学现象的实验研究[J].浙江理工大学学报,2013,30(02):71.
XIAO Yi,SHI Hong hui,WU Yu,et al. Experimental Study on Aerodynamic Phenomenon ofInteraction between Shock Wave and Liquid Drop[J].Journal of Zhejiang Sci-Tech University,2013,30(自科6):71.
[3]亓洪训,张苹,章利特,等. 激波加载固定单双球模型有效阻力测量[J].浙江理工大学学报,2013,30(02):76.
QI Hong xun,ZHANG Ping,ZHANG Li te,et al. Measurement of Effective Resistance of Fixed Single and DoubleSphere Model with Shock Wave Load[J].Journal of Zhejiang Sci-Tech University,2013,30(自科6):76.
[4]陈婉君,章利特,施红辉,等.激波加载单双圆柱非稳态曳力的数值研究[J].浙江理工大学学报,2015,33-34(自科1):55.
CHEN Wan jun,ZHANG Li te,SHI Hong hui,et al.Numerical study of Unsteady Drag Force in Shock Wave s Interaction with Single/Double Cylindrical Models[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科6):55.
[5]叶斌,王超,施红辉,等.平面激波与气泡界面相互作用过程的数值研究[J].浙江理工大学学报,2015,33-34(自科5):682.
YE Bin,WANG Chao,SHI Hong hui,et al.Numerical Study of Interaction Process of Planar Shock Waveand Bubble Interface[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科6):682.
[6]郝李娜,章利特,王天航,等.激波诱导模型球阵非稳态阻力的数值模拟研究[J].浙江理工大学学报,2016,35-36(自科5):726.
HAO Lina,ZHANG Lite,WANG Tianhang,et al.Numerical Simulation Study on Unsteady Drag Force Acting on Model Sphere Array Induced by Shock Wave[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科6):726.
[7]熊红平,刘金宏,施红辉,等.高速氩气流中水滴和电子氟化液滴变形破碎的实验研究[J].浙江理工大学学报,2017,37-38(自科3):409.
XIONG Hongping,LIU Jinhong,SHI Honghui,et al.Experiments on Deformation and Breakup of Water and ElectronicFluoride Droplets in HighSpeed Argon Stream[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科6):409.