|本期目录/Table of Contents|

[1]吴丹,韩维,樊太和.复模糊微分方程的初始值问题[J].浙江理工大学学报,2014,31-32(自科5):550-554.
 WU Dan,HAN Wei,FAN Tai he.Initial Value Problem of Complex Fuzzy Differential Equations[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科5):550-554.
点击复制

复模糊微分方程的初始值问题()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第31-32卷
期数:
2014年自科5期
页码:
550-554
栏目:
(自科)数学及应用
出版日期:
2014-09-10

文章信息/Info

Title:
Initial Value Problem of Complex Fuzzy Differential Equations
文章编号:
1673-3851 (2014) 05-0550-05
作者:
吴丹 韩维 樊太和
浙江理工大学科学计算与软件工程实验室, 杭州 310018
Author(s):
WU Dan HAN Wei FAN Tai he
Lab of Intelligent Computing and Software Engineering, Zhejiang Sci-Tech University,Hangzhou 310018, China
关键词:
复模糊微分方程 初始值问题 牛顿莱布尼茨公式 Zadeh扩展原理
分类号:
O175.8
文献标志码:
A
摘要:
复模糊微分方程的初始值问题是近年来研究的热点问题。首先证明了复模糊域上的牛顿莱布尼茨公式,并建立了微分和积分之间的关系,然后定义了复模糊微分方程的初始值问题,最后给出了基于经典的不动点定理和基于Zadeh在复数域上的扩展原理两种初始值问题存在的结论。然后在此基础上对初始值进行求解。

参考文献/References:

[1] Gilboa G, Zeevi Y Y, Sochen N A. Complex Difusion Processes for Image Filtering[M]// Scale Space and Morphology in Computer Vision. Springer Berlin Heidelberg, 2001: 299-307.
[2] Takac P, Berg L, Engel W, et al. Dynamics on the attractor for the complex GinzburgLandau equation[J]. Rostock Math Kollop, 1995, 49: 163-184.
[3] Buckley J J. Fuzzy complex analysis II: integration[J]. Fuzzy Sets and Systems, 1992, 49(2): 171-179.
[4] Buckley J J, Qu Y. Fuzzy complex analysis I: differentiation[J]. Fuzzy Sets and Systems, 1991, 41(3): 269-284.
[5] Oberguggenberger M. Fuzzy and weak solutions to differential equations[C] //Proceedings of the Tenth International Conference IPMU. 2004: 517-524.
[6] Oberguggenberger M, Pittschmann S. Differential equations with fuzzy parameters[J]. Mathematical and Computer Modelling of Dynamical Systems, 1999, 5(3): 181-202.
[7] Seikkala S. On the fuzzy initial value problem[J]. Fuzzy Sets and Systems, 1987, 24(3): 319-330.
[8] Song S, Wu C. Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations[J]. Fuzzy Sets and Systems, 2000, 110(1): 55-67.
[9]Ma M, Friedman M, Kandel A. Numerical solutions of fuzzy differential equations[J]. Fuzzy Sets and Systems, 1999, 105(1): 133-138.
[10] Nieto J J. The Cauchy problem for continuous fuzzy differential equations[J]. Fuzzy Sets and Systems, 1999, 102(2): 259-262.

备注/Memo

备注/Memo:
收稿日期: 2014-02-25
基金项目: 国家自然科学基金(61210004)
作者简介: 吴丹(1987-),女,湖北孝感人,硕士研究生,研究方向为微分方程
更新日期/Last Update: 2014-09-26