[1] Rowe D M. Thermoelectrics Handbook: Macro to Nano[M]. Boca Raton: CRC Press, 2006: 195-196.
[2] Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.
[3] Disalvo F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703-706.
[4] Dresselhaus M S, Chen G, Tang M Y, et al. New directions for lowdimensional thermoelectric materials[J]. Advanced Materials, 2007, 19(8): 1043-1053.
[5] Snyder G J, Toberer E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.
[6] Vineis C J, Shakouri A, Majumdar A, et al. Nanostructured thermoelectrics: big efficiency gains from small features[J]. Advanced Materials, 2010, 22(36): 3970-3980.
[7] Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a onedimensional conductor[J]. Physical Review B: Condensed Matter, 1993, 47(24): 16631-16634.
[8] Hicks L D, Dresselhaus M S. Effect of quantumwell structures on the thermoelectric figure of merit[J]. Physical Review B, 1993, 47(19): 12727-12731.
[9] Lin Y, Dresselhaus M S. Thermoelectric properties of superlattice nanowires[J]. Physical Review B, 2003, 68(7): 75304-75317.
[10] Zhang Y, Wang H, Kraemer S, et al. Surfactant free synthesis of Bi 2Te 3 Te micro nano heterostructure with enhanced thermoelectric figure of merit[J]. ACS Nano, 2011, 5(4): 3158-3165.
[11] Nolas G S, Sharp J, Goldsmid J. Thermoelectrics: Basic Principles and New Materials Developments[M]. New York: Springer, 2001: 25-26.
[12] Ota J R, Roy P, Srivastava S K, et al. A simple hydrothermal method for the growth of Bi 2Se 3 nanorods[J]. Nanotechnology, 2006, 17(6): 1700-1705.
[13] Adare A, Afanasiev S, Aidala C, et al. Energy loss and flow of heavy quarks in Au+ Au Collisions at sqr= 200 GeV[J]. Physical Review Letters, 2007, 98(17): 172301-172306.
[14] Xiao F, Yoo B, Lee K H, et al. Synthesis of Bi 2Te 3 nanotubes by galvanic displacement[J]. Journal of the American Chemical Society, 2007, 129(33): 10068-10069.
[15] Zhang G Q, Yu Q X, Wang W, et al. Nanostructures for thermoelectric applications: synthesis, growth mechanism, and property studies[J]. Advanced Materials, 2010, 22(17): 1959-1962.
[16] Liu Z, Hu Z, Liang J, et al. Size controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant assisted method[J]. Langmuir, 2004, 20(1): 214-218.
[17] Wang Y, Kim K S. Large scale polyol synthesis of single crystal bismuth nanowires and the role of NaOH in the synthesis process[J]. Nanotechnology, 2008, 19(26): 265303-265309.
[18] Liang Y, Wang W, Zeng B, et al. Influence of NaOH on the formation and morphology of Bi 2Te 3 nanostructures in a solvothermal process: From hexagonal nanoplates to nanorings[J]. Materials Chemistry and Physics, 2011, 129(1): 90-98.
[19] Xiao Q, Weng D, Yang Z, et al. Efficient synthesis of PbTe nanoparticle networks[J]. Nano Research, 2010, 3(10): 685-693.
[20] Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence[J]. Nano Letters, 2003, 3(7): 955-960.
[21] Gao Y, Jiang P, Song L, et al. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidoneassisted polyol reduction[J]. Journal of Physics D: Applied Physics, 2005, 38(7): 1061-1067.
[22] Yu C, Zhang X, Leng M, et al. Preparation and thermoelectric properties of inhomogeneous bismuth telluride alloyed nanorods[J]. Journal of Alloys and Compounds, 2013, 570(5): 86-93.