|本期目录/Table of Contents|

[1]汪林飞,王騊,王晟.超支化铂纳米晶的制备及其电化学性能研究[J].浙江理工大学学报,2014,31-32(自科4):389-392.
 WANG Lin fei,WANG Tao,WANG Sheng.Preparation of Hyperbranched Platinum Nanocrystal and Study on Its Electrochemical Property[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科4):389-392.
点击复制

超支化铂纳米晶的制备及其电化学性能研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第31-32卷
期数:
2014年自科4期
页码:
389-392
栏目:
(自科)纺织与服装工程
出版日期:
2014-07-10

文章信息/Info

Title:
Preparation of Hyperbranched Platinum Nanocrystal and Study on Its Electrochemical Property
文章编号:
1673-3851 (2014) 04-0389-04
作者:
汪林飞 王騊 王晟
浙江理工大学先进纺织材料与制备技术教育部重点实验室, 杭州 310018
Author(s):
WANG Linfei WANG Tao WANG Sheng
Key Laboratory of Advanced Textile Materials and Manufacturing Technology,Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
超支化 铂纳米晶 商业Pt/C 甲醇氧化
分类号:
TQ032.4
文献标志码:
A
摘要:
在含有分散剂聚乙烯吡咯烷酮(PVP)的水溶液体系中,L 抗坏血酸(L-ascorbic acid)还原氯铂酸(H-2PtCl-6·6H-2O)制备出高度分散、超支化结构的铂纳米晶。通过TEM、XRD对试样的形貌与结构进行表征。并且采用循环伏安法对其电化学性能进行研究。结果表明:制备的铂纳米催化剂在酸性条件下的甲醇氧化催化性能是商业Pt/C催化剂的1.6倍,同时在0.6 V,计时1 000 s时的计时电流曲线表明其稳定性比商业Pt/C催化剂好。

参考文献/References:

[1] Somorjai G A. New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions[J]. Applied Surface Science, 1997, 121: 1-19.
[2] Jeong S, Woo K, Kim D, et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink jet printing[J]. Advanced Functional Materials, 2008, 18(5): 679-686.
[3] Shiju N R, Guliants V V. Recent developments in catalysis using nanostructured materials[J]. Applied Catalysis A: General, 2009, 356(1): 1-17.
[4] Zhang J, Li C M. Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems[J]. Chemical Society Reviews, 2012, 41(21): 7016-7031.
[5] Heck R M, Farrauto R J. Automobile exhaust catalysts[J]. Applied Catalysis A: General, 2001, 221(1): 443-457.
[6] Kang Y, Pyo J B, Ye X, et al. Shape controlled synthesis of Pt Nanocrystals: the role of metal carbonyls[J]. ACS Nano, 2012, 7(1): 645-653.
[7] Lim B, Lu X, Jiang M, et al. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth[J]. Nano Letters, 2008, 8(11): 4043-4047.
[8] Wang S, Kuai L, Huang Y, et al. A highly efficient, clean surface, porous platinum electrocatalyst and the inhibition effect of surfactants on catalytic activity[J]. Chemistry: A European Journal, 2013, 19(1): 240-248.
[9] 张雷, 金明尚, 蒋亚琪, 等. 高指数晶面裸露的贵金属纳米晶体的合成[J]. 中国科学: 化学, 2012, 42(1): 1-12.
[10] Song Y, Steen W A, Pena D, et al. Foamlike nanostructures created from dendritic platinum sheets on liposomes[J]. Chemistry of Materials, 2006, 18(9): 2335-2346.
[11] Song Y, Yang Y, Medforth C J, et al. Controlled synthesis of 2 D and 3 D dendritic platinum nanostructures[J]. Journal of the American Chemical Society, 2004, 126(2): 635-645.
[12] Mohanty A, Garg N, Jin R. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties[J]. Angewandte Chemie International Edition, 2010, 49(29): 4962-4966.
[13] Sanles S M, Correa D M A, Carregal R S, et al. Highly catalytic single crystal dendritic Pt nanostructures supported on carbon nanotubes[J]. Chemistry of Materials, 2009, 21(8): 1531-1535.
[14] Xia Y, Xiong Y, Lim B, et al. Shape controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?[J]. Angewandte Chemie International Edition, 2009, 48(1): 60-103.
[15] Wang L, Hu C, Nemoto Y, et al. On the role of ascorbic acid in the synthesis of single crystal hyperbranched platinum nanostructures[J]. Crystal Growth & Design, 2010, 10(8): 3454-3460.

备注/Memo

备注/Memo:
收稿日期: 2013-12-02
基金项目: 国家自然科学基金(51372227,21103152,31070888,50802088);浙江省杰出青年科学基金(R2101054);浙江省自然科学基金项目(Y4080392);浙江省科技厅公益性项目(2012C23050);浙江省创新团队项目(2011R50003)
作者简介: 汪林飞(1989-),女,江西乐平人,硕士研究生,主要从事纳米催化剂材料的研究
通信作者: 王晟,电子邮箱:wangsheng571@hotmail.com
更新日期/Last Update: 2014-09-17