|本期目录/Table of Contents|

[1]张建明.基于改进量子进化算法的作业车间调度研究[J].浙江理工大学学报,2014,31-32(自科3):310-315.
 ZHANG Jian ming.A Novel Quantum Evolutionary Algorithm for Job shop Scheduling[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科3):310-315.
点击复制

基于改进量子进化算法的作业车间调度研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第31-32卷
期数:
2014年自科3期
页码:
310-315
栏目:
(自科)电子与信息技术
出版日期:
2014-05-10

文章信息/Info

Title:
A Novel Quantum Evolutionary Algorithm for Job shop Scheduling
文章编号:
1673-3851 (2014) 03-0310-06
作者:
张建明
浙江理工大学理学院, 310018 杭州
Author(s):
ZHANG Jian ming
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
作业车间调度 转换机制 量子进化 旋转角 跳跃算子
分类号:
TP18
文献标志码:
A
摘要:
针对作业车间调度问题,以最大完工时间最小化为优化目标,提出了跳跃基因量子进化算法(JGQEA)。该算法在量子进化算法的基础上引入跳跃基因算子,同时采用动态调整量子旋转角策略以提高算法的搜索能力。通过仿真实验验证了算法的有效性,结果表明JGQEA优于QEA等几种进化算法。

参考文献/References:

[1] Narayanan A, Moore M. Quantum inspired genetic algorithm[C]//IEEE International Conference on Evolutionary Computation. Iscataway, 1996: 61-66.
[2] Han K H, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problem[C]//IEEE International Conference on Evolutionary Computation. Lajolla, 2000: 1354-1360.
[3] Han K H, Kim J H. Quantum inspired evolutionary algorithm for a class of combinatorial timization[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 580-593.
[4] 杨俊安, 庄镇泉, 史亮. 多宇宙并行量子遗传算法[J]. 电子学报, 2004, 32(6): 923-928.
[5] Zhang G, Gu Y, Hu L, et al. A novel quantum genetic algorithm and its application to digital filter design[J]. Intelligent Transportation Systems, 2003, 2: 1600-1605.
[6] Chen H, Zhang J H, Zhang C. Chaos updating rotated gates quantuminspired genetic algorithm proceedings of the international conference on communications[J]. Cuircuits and Systems, 2004, 2: 1108-1112.
[7] Wang L, Tang F, Wu H. Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation[J]. Appl Math Comput, 2005, 171: 1141-1156.
[8] Li P, Li S. Quantuminspired evolutionary algorithm for continuous spaces optimization[J]. Chinese Journal of Electronics, 2008, 17(1): 80-84.
[9] 李士勇, 李盼池. 基于实数编码和目标函数梯度的量子遗传算法[J]. 哈尔滨工业大学学报, 2006, 38(8): 1216-1218, 1223.
[10] Li P, Li S. Quantum inspired evolutionary algorithm for continuous spaces optimization based on Bloch coordinates of qubits[J]. Neurocomputing, 2008, 72: 581-591.
[11] Gu J, Gu X, Gu M. A novel parallel quantum genetic algorithm for stochastic job shop scheduling[J]. J Math Anal Appl, 2009, 355(1): 63-81.
[12] Gu J, Gu M, Cao C, et al. A novel competitive co evolutionary quantum genetic algorithm for stochastic job shop scheduling problem[J]. Comput Oper Res, 2010, 37(5): 927-937.
[13] 张建明. 基于改进量子进化算法的生产调度问题研究[D]. 上海: 华东理工大学, 2013.
[14] Ripon K S N, Sam K, Man K F. A real coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization[J]. Inf Sci, 2007, 177(2): 632-654.
[15] Muth J F, Thompson G L. Industrial Scheduling[M]. EngleWood Cliffs: PrenticeHall, 1963.
[16] Ripon K S N, Chi H T, Sam K. Multi objective evolutionary job shop scheduling using jumping genes genetic algorithm[C]//2006 International Joint Conference on Neural Networks. Vancouver, 2006: 3100-3107.
[17] Gao L, Zhang G, Zhang L, et al. An efficient memetic algorithm for solving the job shop scheduling problem[J]. Comput Indust Engin, 2011, 60: 699-705.
[18] Ombuki B M, Ventresca M. Local search genetic algorithms for job shop scheduling problem[J]. Applied Intelligence, 2004, 21: 99-109.
[19] Nakano R, Yamada T. Conventional genetic algorithm for job shop problems[C]//Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). San Diego, 1991: 474-479.
[20] Kennedy J, Eberhart R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks, Perth, 1995: 1942-1948.
[21] Tasgetiren M F, Sevkli M, Liang Y C. A particle swarm optimization and differential evolution algorithms for job shop scheduling problem[J]. Inter J Oper Res, 2006, 3(2): 120-135.

备注/Memo

备注/Memo:
收稿日期: 2013-12-30
基金项目: 国家自然科学基金(10871181)
作者简介: 张建明(1972-),男,陕西延川人,博士、副教授,主要从事微分方程分支问题及智能计算方面的研究
更新日期/Last Update: 2014-05-19