|本期目录/Table of Contents|

[1]马晓阳,武传宇,陈洪立,等.水平90°弯管内固液两相流动的数值模拟[J].浙江理工大学学报,2014,31-32(自科3):228-234.
 MA Xiao yang,WU Chuan yu,CHEN Hong li,et al.Numerical Simulation of Solid liquid Two phase Flow in a Horizontal 90° Elbow Pipe[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科3):228-234.
点击复制

水平90°弯管内固液两相流动的数值模拟()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第31-32卷
期数:
2014年自科3期
页码:
228-234
栏目:
(自科)机械与自动控制
出版日期:
2014-05-10

文章信息/Info

Title:
Numerical Simulation of Solid liquid Two phase Flow in a Horizontal 90° Elbow Pipe
文章编号:
1673-3851 (2014) 03-0228-07
作者:
马晓阳 武传宇 陈洪立 窦华书
浙江理工大学机械与自动控制学院, 杭州 310018
Author(s):
MA Xiao yang WU Chuan yu CHEN Hongli DOU Hua shu
School of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
固液两相流 90°弯管 数值模拟 二次流 混合模型
分类号:
TH31
文献标志码:
A
摘要:
为研究90°弯管内固液两相流动特征,采用多相流混合模型对水平90°弯管内水和沙粒固液两相流动进行数值模拟,分析弯管典型横截面上二次流现象,讨论其发展变化对沙粒浓度分布的影响。模拟结果显示:当Re=5×10 4时,随着入口沙粒浓度升高,弯管出口横截面中心区域混合流体速度趋于更均匀分布,随着入口沙粒直径增大,沙粒快速积聚于管道下侧,形成堆积;当Re数增大到2×10 5时,在相同沙粒直径下,弯管出口横截面混合流体速度分布变化不大,除管道下侧区域外,沙粒浓度分布变得更均匀。与实验结果对比表明,该模型可用于弯曲管道内固液两相流动特性的有效计算。

参考文献/References:

[1] 倪晋仁, 王光谦. 固液两相流研究的两种方法之比较[J]. 泥沙研究, 1992(3): 95102.
[2] Ling J, Skudarnov P V, Lin C X, et al. Numerical investigations of liquidsolid slurry flows in a fully developed turbulent flow region[J]. International Journal of Heat and Fluid Flow, 2003, 24(3): 389398.
[3] Lin C X, Ebadian M A. A numerical study of developing slurry flow in the entrance region of a horizontal pipe[J]. Computers & Fluids, 2008, 37(8): 965974.
[4] 白晓宁, 胡寿根. 浆体管道的阻力特性及其影响因素分析[J]. 流体机械, 2000, 28(11): 2629.
[5] 宋文吉, 肖睿, 冯自平, 等. 潜热输送介质颗粒沉降速度的固液两相流模拟[J]. 工程热物理学报, 2010, 31(10): 16931696.
[6] Chen L, Duan Y, Pu W, et al. CFD simulation of coalwater slurry flowing in horizontal pipelines[J]. Korean Journal of Chemical Engineering, 2009, 26(4): 11441154.
[7] Taylor A, Whitelaw J H, Yianneskis M. Curved ducts with strong secondary motion velocity measurements of developing laminar and turbulent flow[J]. ASME Transactions Journal of Fluids Engineering, 1982, 104: 350359.
[8] Lyne W H. Unsteady viscous flow in a curved pipe[J]. Journal Fluid Mech, 1971, 45: 1331.
[9] Skudarnov P V, Kang H J, Lin C X, et al. Experimental investigation of singleand double species slurry transport in a horizontal pipeline[C]//The Proceedings of ANS 9th International Topical Meetingon Robotics and Remote Systems. Seattle, WA, 2001: 49.
[10] HU X, GUO L. Numerical investigation of catalystliquid slurry flow in the photocatalytic reactor for hydrogen production based on algebraic slip model[J]. International Journal of Hydrogen Energy, 2010, 35(13): 70657072.
[11] 张宏兵, 陈露露, 谢荣华, 等. 水平圆管固液两相稳态流动特性数值模拟[J]. 化工学报, 2009, 60(5): 11621168.
[12] Wang J, Wang S, Zhang T, et al. Numerical investigation of ice slurry isothermal flow in various pipes[J]. International Journal of Refrigeration, 2012, 36: 7080
[13] Raisee M, Alemi H, Iacovides H. Prediction of developing turbulent flow in 90°curved ducts using linear and nonlinear low Re  k ε  models[J]. International Journal for Numerical Methods in Fluids, 2006, 51(12): 13791405.
[14] Gillies R G, Shook C A, Xu J. Modelling heterogeneous slurry flows at high velocities[J]. The Canadian Journal of Chemical Engineering, 2004, 82(5): 10601065.

相似文献/References:

[1]吴卫东,王艳萍,方华,等.颗粒组分特性对稠密细颗粒固液两相流流动特性的影响[J].浙江理工大学学报,2020,43-44(自科一):58.
 WU Weidong,WANG Yanping,FANG Hua,et al.Effect of particle composition characteristics on flow characteristics of  dense fine particles solidliquid twophase flow[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科3):58.

备注/Memo

备注/Memo:
收稿日期: 2013-12-03
基金项目: 国家自然科学基金(51205363);浙江理工大学科研启动基金(11130032241201)
作者简介: 马晓阳(1990-),男,浙江东阳人,硕士研究生,研究方向为两相流和流体机械
通信作者: 窦华书,电子邮箱:huashudou@yahoo.com
更新日期/Last Update: 2014-05-19