|本期目录/Table of Contents|

[1]韦嘉佳,吴韬,郑旭明.锯齿型石墨烯纳米带体系的磁性与电子结构研究[J].浙江理工大学学报,2014,31-32(自科1):88-101.
 WEI Jia jia,WU Tao,ZHENG Xu ming.Research on Magnetism and Electronic Structure of Co and NiZigzag Graphene Nanoribbon System[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科1):88-101.
点击复制

锯齿型石墨烯纳米带体系的磁性与电子结构研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第31-32卷
期数:
2014年自科1期
页码:
88-101
栏目:
物理与化学
出版日期:
2014-01-03

文章信息/Info

Title:
Research on Magnetism and Electronic Structure of Co and NiZigzag Graphene Nanoribbon System
文章编号:
O641.121
作者:
韦嘉佳 吴韬 郑旭明
1. 浙江理工大学理学院, 杭州 310018; 2. 浙江大学理学院, 杭州 310027
Author(s):
WEI Jia jia WU Tao ZHENG Xu ming
1. School of Sciences, Zhejiang SciTech University, Hangzhou 310018, China; 2. School of Sciences, Zhejiang University, Hangzhou 310027, China
关键词:
锯齿型石墨烯纳米带 3d过渡金属 密度泛函理论 磁性 电子结构 VASP
分类号:
1673-3851 (2014) 01-0098-04
文献标志码:
A
摘要:
采用自旋极化的密度泛函理论计算方法研究Co、Ni吸附的锯齿型石墨烯纳米带(n=6,8,10)的几何构型、电子结构与磁性。在真空环境里,吸附过渡金属面后,锯齿型石墨烯纳米带发生弯曲,金属面大多不平整,且在n=8,10的锯齿型石墨烯纳米带上Co、Ni原子倾向于团聚成立体团簇。所有的Co、Ni锯齿型石墨烯纳米带体系都是金属性的。计算结果表明,石墨烯纳米带的类一维性和边界形状将影响多个金属原子吸附后的堆积构型,同时锯齿型石墨烯纳米带作为吸附底物使吸附的过渡金属产生与无基底支持的二维、三维金属体系和石墨基底上吸附的过渡金属不同的磁性。

参考文献/References:

[1] Young W S, Marvin L C, Steven G L. Energy gaps in graphene nanoribbons[J]. Phys Rev Lett, 2006, 97(21): 216803: 1-4.
[2] Longo R C, Carrete J, Gallego L J. Ab initio study of 3d, 4d, and 5d transition metal adatoms and dimers adsorbed on hydrogenpassivated zigzag graphene nanoribbons[J]. Phys Rev B, 2011, 83(23): 1-9.
[3] Kan E J, Xiang H J, Yang J L, et al. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a firstprinciples study[J]. J Chem Phys, 2007, 127(16): 1-5.
[4] Krüger P, Rakotomahevitra A, Parlebas J C, et al. Magnetism of epitaxial 3dtransitionmetal monolayers on graphite[J]. Phys Rev B, 1998, 57(9): 5276-5280.
[5] Zanella I, Fagan S B, Mota R, et al. Electronic and magnetic properties of Ti and Fe on graphene[J]. J Phys Chem C, 2008, 112(25): 9163-9167.
[6] Uchoa B, Lin C Y, Neto A C. Tailoring graphene with metals on top[J]. Phys Rev B, 2008, 77(3): 1-5.
[7] Zhou J, Wang L, Qin R, et al. Structure and electronic and transport properties of transition metal intercalated graphene and graphenehexagonalBoronNitride bilayer[J]. J Phys Chem C, 2011, 115(51): 25273-25280.
[8] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B, 1992, 46(11): 6671-6687.
[9] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
[10] Moruzzi V, Marcus P. Magnetism in bcc 3d transition metals: onset and approach to the Hundsrule limit[J]. Phys Rev B, 1998, 38(3): 1613-1620.
[11] Kruger P, Rakotomahevitra A, Parlebas J C, et al. Magnetism of epitaxial 3dtransitionmetal monolayers on graphite[J]. Phys Rev B, 1998, 57(9): 5276-5280.

备注/Memo

备注/Memo:
收稿日期: 2013-03-08
作者简介: 韦嘉佳(1986-),女,广西百色人,硕士研究生,主要从事石墨烯相关体系的第一性原理计算研究。
更新日期/Last Update: 2013-12-30