[1] Young W S, Marvin L C, Steven G L. Energy gaps in graphene nanoribbons[J]. Phys Rev Lett, 2006, 97(21): 216803: 1-4.
[2] Longo R C, Carrete J, Gallego L J. Ab initio study of 3d, 4d, and 5d transition metal adatoms and dimers adsorbed on hydrogenpassivated zigzag graphene nanoribbons[J]. Phys Rev B, 2011, 83(23): 1-9.
[3] Kan E J, Xiang H J, Yang J L, et al. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a firstprinciples study[J]. J Chem Phys, 2007, 127(16): 1-5.
[4] Krüger P, Rakotomahevitra A, Parlebas J C, et al. Magnetism of epitaxial 3dtransitionmetal monolayers on graphite[J]. Phys Rev B, 1998, 57(9): 5276-5280.
[5] Zanella I, Fagan S B, Mota R, et al. Electronic and magnetic properties of Ti and Fe on graphene[J]. J Phys Chem C, 2008, 112(25): 9163-9167.
[6] Uchoa B, Lin C Y, Neto A C. Tailoring graphene with metals on top[J]. Phys Rev B, 2008, 77(3): 1-5.
[7] Zhou J, Wang L, Qin R, et al. Structure and electronic and transport properties of transition metal intercalated graphene and graphenehexagonalBoronNitride bilayer[J]. J Phys Chem C, 2011, 115(51): 25273-25280.
[8] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B, 1992, 46(11): 6671-6687.
[9] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
[10] Moruzzi V, Marcus P. Magnetism in bcc 3d transition metals: onset and approach to the Hundsrule limit[J]. Phys Rev B, 1998, 38(3): 1613-1620.
[11] Kruger P, Rakotomahevitra A, Parlebas J C, et al. Magnetism of epitaxial 3dtransitionmetal monolayers on graphite[J]. Phys Rev B, 1998, 57(9): 5276-5280.