|本期目录/Table of Contents|

[1]袁素敬,梁余培,陈勇毅,等.高效表达Smad2蛋白的A549细胞模型的建立[J].浙江理工大学学报,2013,30(03):372-376.
 YUAN Sujing,LIANG Yupei,CHEN Yongyi,et al.Establishment of A549 Cell Model Expressing Smad2 Protein Efficiently[J].Journal of Zhejiang Sci-Tech University,2013,30(03):372-376.
点击复制

高效表达Smad2蛋白的A549细胞模型的建立()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第30卷
期数:
2013年03期
页码:
372-376
栏目:
(自科)生物与生命科学
出版日期:
2013-05-10

文章信息/Info

Title:
Establishment of A549 Cell Model Expressing Smad2 Protein Efficiently
文章编号:
1673-3851 (2013) 03-0372-05
作者:
袁素敬 梁余培 陈勇毅 章康健
1. 浙江理工大学生命科学学院新元医学与生物技术研究所, 杭州 310018;2. 中国科学院上海生命科学研究院生物化学与细胞生物学研究所, 上海 200031
Author(s):
YUAN Sujing LIANG Yupei CHEN Yongyi ZHANG Kangjian
1. Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. Institute of Biochemistry and Cell Biology, Shanghai Life Sciences Institute, Chinese Academy of Sciences, Shanghai 200031, China
关键词:
A549细胞株 慢病毒 GFP Smad2
分类号:
Q507
文献标志码:
A
摘要:
将携带Smad2 Flag基因的慢病毒包装系列质粒转染293T细胞,进行慢病毒包装。用收集并纯化好的慢病毒感染A549细胞,流式分选筛选出GFP阳性的细胞,用Flag抗体和Smad2抗体进行Western blot鉴定。流式分选得到的GFP阳性的A549细胞经Western blot鉴定能高效表达外源Smad2 Flag融合蛋白,同时空载慢病毒处理的GFP阳性细胞并不表达Smad2 Flag蛋白。结果表明成功构建了高效表达Smad2蛋白的A549细胞系,为进一步研究超级干扰素抗肺癌的分子机制奠定了基础。

参考文献/References:

[1] Entchev E V, Schwabedissen A, GonzalezGaitan M. Gradient formation of the TGFbeta homolog Dpp[J]. Cell, 2000, 103(6): 981-991.
[2] Elahi M, Rakhshan V, Ghasemian N T, et al. Prognostic value of transforming growth factor beta 1 [TGFbeta1] and matrix metalloproteinase 9 [MMP9] in oral squamous cell carcinoma[J]. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 2012, 17(1): 21-27.
[3] Gomes L R, Terra L F, Wailemann R A, et al. TGFbeta1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast Cancer cells[J]. BMC Cancer, 2012, 12: 26.
[4] Imamura T, Hikita A, Inoue Y. The roles of TGFbeta signaling in carcinogenesis and breast cancer metastasis[J]. Breast Cancer, 2012, 19(2): 118-124.
[5] Lampropoulos P, ZiziSermpetzoglou A, Rizos S, et al. Prognostic significance of transforming growth factor beta (TGFbeta) signaling axis molecules and Ecadherin in colorectal cancer[J]. Tumour Biology, 2012, 33(4): 1005-1014.
[6] Kyprianou N. Activation of TGFbeta signalling in human prostate cancer cells suppresses tumorigenicity via deregulation of cell cycle progression and induction of caspase1 mediated apoptosis: significance in prostate tumorigenesis[J]. Prostate Cancer and Prostatic Diseases, 1999, 2(S3): S18.
[7] Li X, Sterling J A, Fan K H, et al. Loss of TGFbeta responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions[J]. Molecular Cancer Research : MCR, 2012, 10(4): 494-503.
[8] Mascareno E J, Belashov I, Siddiqui M A, et al. Hexim1 modulates androgen receptor and the TGFbeta signaling during the progression of prostate cancer[J]. The Prostate, 2012, 72(9): 1035-1044.
[9] Hirota M, Watanabe K, Hamada S, et al. Smad2 functions as a coactivator of canonical Wnt/beta catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300[J]. Cellular Signalling, 2008, 20(9): 1632-1641.
[10]Scheel C, Eaton E N, Li S H, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast[J]. Cell, 2011, 145(6): 926-940.
[11] Gold L I. The role for transforming growth factor beta (TGFbeta) in human cancer[J]. Critical Reviews in Oncogenesis, 1999, 10(4): 303-360.
[12] Goggins M, Shekher M, Turnacioglu K, et al. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas[J]. Cancer Research, 1998, 58(23): 5329-5332.
[13] Kawata M, Koinuma D, Ogami T, et al. TGFbetainduced epithelial mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by proinflammatory cytokines derived from RAW 264.7 macrophage cells[J]. Journal of Biochemistry, 2012, 151(2): 205-216.
[14] Pestka S, Langer J A, Zoon K C, et al. Interferons and their actions[J]. Annual Review of Biochemistry, 1987, 56: 727-777.
[15] Vilcek J. Novel interferons[J]. Nature Immunology, 2003, 4(1): 8-9.
[16] Liu Y J. IPC: professional type 1 interferon producing cells and plasmacytoid dendritic cell precursors[J]. Annual Review of Immunology, 2005, 23: 275-306.
[17] de Weerd N A, Samarajiwa S A, Hertzog P J. Type I interferon receptors: biochemistry and biological functions[J]. The Journal of Biological Chemistry, 2007, 282(28): 20053-20057.
[18] Ulloa L, Doody J, Massague J. Inhibition of transforming growth factorbeta/SMAD signalling by the interferongamma/STAT pathway[J]. Nature, 1999, 397(6721): 710-713.
[19] Soto P, Price Schiavi S A, Carraway K L. SMAD2 and SMAD7 involvement in the post translational regulation of Muc4 via the transforming growth factor beta and interferongamma pathways in rat mammary epithelial cells[J]. The Journal of Biological Chemistry, 2003, 278(22): 20338-20344.
[20] Park I K, Letterio J J, Gorham J D. TGF beta 1 inhibition of IFNgamma induced signaling and Th1 gene expression in CD4+ T cells is Smad3 independent but MAP kinase dependent[J]. Molecular Immunology, 2007, 44(13): 3283-3290.
[21] Reardon C, McKay D M. TGF beta suppresses IFNgamma STAT1 dependent gene transcription by enhancing STAT1 PIAS1 interactions in epithelia but not monocytes/macrophages[J]. J Immunol, 2007, 178(7): 4284-4295.
[22] 李慧玲, 杨冬琴, 欣曹, 等. 超级干扰素抑制A 549增殖诱导其衰老[J]. 中国细胞生物学学报, 2011, 33(5): 473-478.

备注/Memo

备注/Memo:
收稿日期: 2012-04-25
基金项目: 浙江理工大学科研启动基金(1116818 Y)
作者简介: 袁素敬(1985-),女,河北沧州人,硕士研究生,研究方向为超级干扰素抗癌机制研究。
通信作者: 章康健,电子邮箱:zhangkangjian@sibcb.ac.cn
更新日期/Last Update: