[1]Rezatofighi S H, Soltanian Zadeh H. Automatic recognition of five types of white blood cells in peripheral blood[J]. Computerized Medical Imaging and Graphics, 2011, 35: 333-343.
[2]Guo N, Zeng L, Wu Q. A method based on multispectral imaging technique for white blood cell segmentation[J]. Computers in Biology and Medicine, 2006, 37: 70-76.
[3] Ghosh M, Das D, Chakraborty C, et al. Automated leukocyte recognition using fuzzy divergence[J]. Micron, 2010, 41: 840-846.
[4] Ko B C, Gim J W, Nam J Y. Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake[J]. Micron, 2011, 42: 695-705.
[5] Li K, Lu Z, Liu W, et al. Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake[J]. Pattern Recognition, 2012, 45(4): 1255-1264.
[6] Pan C, Park D S, Yoon S, et al. Leukocyte image segmentation using simulated visual attention[J]. Expert Systems with Applications, 2012, 39(8): 7479-7494.
[7] Huang D C, Huang K D, Chan Y K. A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images[J]. The Journal of Systems and Software, 2012, 85: 2104-2118.
[8] Ko B C, Gim J W, Nam J Y. Cell image classification based on ensemble features and random forest[J]. Electronics Letters, 2011, 47(11): 638-639.
[9] Sabino D M U, Costa L F, Rizzatti E G, et al. A texture approach to leukocyte recognition[J]. RealTime Imaging, 2004, 10: 205-216.
[10] TheeraUmpon N. White blood cell segmentation and classification in microscopic bone marrow images[J]. Fuzzy Systems and Knowledge Discovery, Lecture Notes in Computer Science, 2005, 3614: 787-796.
[11] RamirezCortes J M, GomezGil P, AlarconAquino V, et al. Neural networks and svmbased classification of leukocytes using the morphological pattern spectrum[J]. Soft Computing for Recognition Based on Biometrics, 2010, 312: 19-35.
[12] Jin L, Tianxu Z. Fast algorithm for generation of moment invariants[J]. Pattern Recognition, 2004, 37: 1745-1756.
[13] Honeycutt C E, Plotnick R. Image analysis techniques and graylevel cooccurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures[J]. Computers & Geosciences, 2008, 34: 1461-1472.
[14] Nie F, Gao C, Guo Y, et al. Twodimensional minimum local crossentropy thresholding based on cooccurrence matrix[J]. Computers and Electrical Engineering, 2011, 37: 757-767.