|本期目录/Table of Contents|

[1]马晓艳. 模函数的Hlder连续性和次可乘性[J].浙江理工大学学报,2012,29(05):727-729.
 MA Xiao yan. Holder Continuity and Submultiplicative Properties of the Modular Function[J].Journal of Zhejiang Sci-Tech University,2012,29(05):727-729.
点击复制

 模函数的Hlder连续性和次可乘性()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第29卷
期数:
2012年05期
页码:
727-729
栏目:
出版日期:
2012-10-28

文章信息/Info

Title:
 Holder Continuity and Submultiplicative Properties of the Modular Function
文章编号:
16733851 (2012) 05072703
作者:
 马晓艳
 浙江理工大学理学院, 杭州 310018
Author(s):
 MA Xiaoyan
 Holder Continuity and Submultiplicative Properties of the Modular Function
关键词:
 广义Ramanujan模方程 模函数 Hlder连续性 次可乘性
分类号:
O174
文献标志码:
A
摘要:
     模函数φK(r)在几何函数论、模方程理论得到广泛研究,如拟共形映照理论中Hlder连续性和次可乘性,文章研究了广义Ramanujan模方程解φK(a,r)的Hlder连续性和次可乘性。当a=1/2时,φK(a,r)=φK(r)。

参考文献/References:

 [1]Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas[M]. New York: Graphs and Mathematical Tables, Dover, 1965.
[2] Rainville E D. Special Functions[M]. New York: MacMillan, 1960.
[3] Anderson C D, Qiu S L. Vamanamurthy M K, et al. Generalized elliptic integrals and modular equations[J]. Pacific J, Math, 2000, 192: 137.
[4] Qiu S L, Vuorinen M. Special Functions in Geometric Function Theory[M]//Handbook of Complex Analysis: Geometric Function Theory: Vol. 2, Elsevier Sci, B. V. Amsterdam, 2005: 621659.
[5] Alzer H, Qiu S L. Monotonicity theorems and inequalities for the complete elliptic integrals[J]. J Comput Appl Math, 2004, 172: 289312.
[6] Andrs S, Baricz . Bounds for complete elliptic integral of the first kind[J]. Expo Math, 2010(28): 357364.
[7] Guo B N, Qi F. Some bounds for the complete elliptic integrals of the first and second kinds[J]. Math Inequal Appl, 2011, 14: 323334.
[8] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and QuasiConformal Maps[M]. New York: John Wiley & Sons, 1997.
[9] Berndt B C, Bhargave S, Garvan F G. Ramanujans theories of elliptic functions to alternative bases[J]. Trans Amer Math Soc, 1995, 347: 41634244.
[10] Letho O, Virtanen K I. Quasiconformal Mappings in the Plane[M]. New YorkHeidelberg: Springer Verlag, 1973.
[11] He C Q, Distortion estimates of quasiconformal mappings[J]. Sci Sinica Ser A, 1984, 27: 225232.
[12] Vuorinen M. Conformal Geometry and Quasiregular Mappings[M]. Berlin: SpringerVerlag, 1988.
[13] Anderson G D, Vamanamurthy M K. Vuorinen M. Distortion funtions for plane quasiconformal mappings[J]. Israel J Math, 1988, 62: 116.
[14] Qiu S L, Vamanamurthy M K, Vuorinen M. Bounds for quasiconformal distortion functions[J]. J Math Amal Appl, 1997, 205: 4364.
[15] Qiu S L, Vuorinen M. Submultiplicative properties of the φKdistortion function[J]. Studia Math, 1996, 117: 225242.

相似文献/References:

[1]陈智杰a,赵晓丽a,徐畅b,等. 有机颜料微胶囊在涂料染色中的应用及其染色效果分析[J].浙江理工大学学报,2013,30(01):1.
 CHEN Zhi jiea,ZHAO Xiao lia,XU Changb,et al. Application of Organic Pigment Microcapsule in Pigment Dyeingand Its Dyeing Results[J].Journal of Zhejiang Sci-Tech University,2013,30(05):1.
[2]詹永娟,谢维斌,姜晓云,等. 织物液态水传递性能的自动检测技术及应用[J].浙江理工大学学报,2013,30(01):6.
 ZHAN Yong juan,XIE Wei bin,JIANG Xiao yun,et al. Technology and Application of the Automatic Detection inTesting Liquid Transport Properties of Textiles[J].Journal of Zhejiang Sci-Tech University,2013,30(05):6.
[3]孙麒. 基于极大似然估计的织物图像分割[J].浙江理工大学学报,2013,30(01):12.
 SUN Qi. Textile Image Segmentation Based on theMaximum Likelihood Algorithm[J].Journal of Zhejiang Sci-Tech University,2013,30(05):12.
[4]巫静a,田彦杰b,汪澜a,等. 基于SVM理论的涤纶织物分散染料上染率模型研究[J].浙江理工大学学报,2013,30(01):21.
 WU Jinga,TIAN Yan jieb,WANG Lana,et al. Research on Modeling of DyeUptake Rate for Disperse Dyes onPolyester Fibers Based on SVM[J].Journal of Zhejiang Sci-Tech University,2013,30(05):21.
[5]周昊,徐英莲,齐素梅.微孔结构改性涤纶/棉混纺针织物服用性能的研究[J].浙江理工大学学报,2013,30(01):21.
 ZHAO Hao,XU Ying lian,QI Su mei. Research on Using Knitted Blend Fabric of Modified Polyesterby Cellular Structure and Cotton for Wearing[J].Journal of Zhejiang Sci-Tech University,2013,30(05):21.
[6]孙佳英,李艳清,章斐燕,等. 纺织结构复合材料铺层顺序设计与力学性能分析[J].浙江理工大学学报,2013,30(01):27.
 SUN Jia ying,LI Yan qing,ZHANG Fei yan,et al. Study on Layer Sequence Design and Mechanical Propertiesof Textile Structure Composites[J].Journal of Zhejiang Sci-Tech University,2013,30(05):27.
[7]丁源维,王騊,姚菊明,等. 静电纺制备TiO2/PVA复合纳米纤维及其光催化性能研究[J].浙江理工大学学报,2013,30(01):31.
 DING Yuan wei,WANG Tao,YAO Ju ming,et al. Photocatalytic Performance Investigation of TiO2/PVANanofibers Prepared by Electrospinning[J].Journal of Zhejiang Sci-Tech University,2013,30(05):31.
[8]章梦洁,伍仲,方园. 涤棉混纺织物阻燃性能的实验分析[J].浙江理工大学学报,2013,30(01):36.
 ZHANG Meng jie,WU Zhong,FANG Yang. Experimental Study on the PolyesterCotton BlendedFabrics Flame Retardancy[J].Journal of Zhejiang Sci-Tech University,2013,30(05):36.
[9]胡觉亮a,孔云鹏b,韩曙光a,等. 基于随机需求的服装供应链回购契约研究[J].浙江理工大学学报,2013,30(01):40.
 HU Jue lianga,KONG Yun pengb,HAN Shu guanga,et al. Study on Repurchase Contract in a Fashion Chainwith the Stochastic Demand[J].Journal of Zhejiang Sci-Tech University,2013,30(05):40.
[10]毛雯,阎玉秀. 针织服装供应商评价指标体系构建与权重确定[J].浙江理工大学学报,2013,30(01):46.
 MAO Wen,YAN Yu xiu. Building Evaluation Index System for Knitting Clothing Suppliersand Determining the Weight[J].Journal of Zhejiang Sci-Tech University,2013,30(05):46.

备注/Memo

备注/Memo:
 收稿日期: 2011-10-25
基金项目: 国家自然科学基金资助项目(11171307,11101369);浙江省自然科学基金项目(Y0913841)
作者简介: 马晓艳(1979-),女,吉林梅河口人,硕士,讲师,主要从事Ramanujan模方程、拟共形特殊函数的研究。
更新日期/Last Update: