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Abstract: For « €R,=0 and x € (0, c0), let f (I)E<W> . In this paper, the authors

a1

study the geometric convexity of the function f . . which is a generalization of the corresponding known
afs
result of f . They also study the monotonicity and logarithmic convexity properties of the gamma

function combined with the hyperbolic functions instead of the exponential function in f Moreover,

Bt
the inequalities derived from these properties improve some related known results of the gamma function.
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0 Introduction

The classical Euler gamma function defined by

(o) :J e dr (Rex > 0)

0
is one of the most important functions in analysis and its applications. The psi or digamma function, the

logarithmic derivative of the gamma function, and the polygamma functions can be expressed as

ERMED o el —e™
s[)(I)_F(I) - y+JO 1—e de

and

. 1
(n) — (— [ |
() =(—1D""n! ;) Sy

for n=1, 2, *-+, where y=0.5772156649+++ is the Euler-Mascheroni constant,

(1
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The asymptotic formulas of T'(x) and ¢(x) are'”

1
288z

1 .
I'x) Nef‘rx‘r7%«/2n<l+ﬁ+ +) , x — oo with |argr | <<= (2

and
(x) ~lo B + S -+ e — co with |argr | << (3)
glx 8 T 1227 1202' 25240 T with jargr| <=

The gamma function plays a significant role in special function theory. By studying the monotonicity

and convexity properties of the combinations related to the gamma function and elementary functions,
some estimates of the gamma function are obtained, see [2—8].
Let IC (0, ©©) be an interval and f: I-—>(0, ©©) be a continuous real-valued function. We say that f

is geometrically convex (concave) on I if one of the following is true:

f(am,) < ) JT@p @)

forall z , x,€1;
STy =T @)
i=1 i=1

forall z s x,s »*s x €I and2,s A,, **+, A =0 with iljl/ll.:L see [ 7]. We say that f is logarithmically

convex (concave), log-convex (concave) for abbreviation, if

f(ljy)g =) VT )

for all x, yET, see [9].

A positive function f is said to be logarithmically completely monotonic (I.LCM) on an interval I if its
logarithm log f satisfies

(— D" [logf(x)]™ =0 €))

forall z&I and n=1, 2, :--. Moreover, f is said to be strictly LCM on I if the inequality (4) is strict,
see [10]. Clearly, the function f is decreasing and log-convex if f is LCM on I.

For a €R, =0 and x € (0, ==), let

S (1) = (e"'ha.ﬁ(Jc))il ,

where

T +p
ha_ﬂ(x) =

Clearly, the function hmﬁ(x) is strictly decreasing and log-convex, and h,, (x)) ' is log-convex on (0,

©o) for certain values (as 8) by Theorem 1 in the sequel.

Let
D, ={(a\p la <0, >0}
D2:{(a,ﬁ) agé, /321} :
D, ={@p|a=p o=
It is known that the function
oo oy =2 (5)

is geometrically convex on (0, =) by Theorem 1.1 in [ 8]. It is stated in Theorem 3.2 in [ 3] that the

function f1 . is decreasing and log-convex from (0, =°) onto (/2x, oo), and the function f,  is
Lo. .0

increasing and log-concave from (0, ©©) onto (1, ©©). As a generalization, Theorem 1 and Theorem 2 in
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,is LCM on (0, o) for (a, )€ D, and display the necessary and sufficient

and f  tobe LCMon (0, =), In [12-13], the authors supplemented some
is also LCM for certain values (as ), see [ 14-15].

For a more treatment with the LCM property of the gamma function, we refer the reader to [11-15].

[11] show that the function S
conditions for the functions f

results of f

,0,+1

The function f N

aft1e —1

We here only list the results of fn.[}-il related to the topic of the present paper. The following Theorem 1 is
from Theorem 1 in [ 12 ] and Theorem 2 in [ 14 ].

Theorem 1 a) The function f . (x) is LCM on (0, =) for (a, ) ED,.

Bt

b) The function f (x) is LCM on (0, <o) if and only if a<% for p=1.

asf,+1

¢) The function fa.ﬂ.il(x) is LCM on (0, =) if and only if a=f for ﬁ}%

The following inequalities (6), (7) can be easily derived from the monotonicity and logarithmic
convexity of the functions in Theorem 1.

For 0<<ax<{y, the inequality

PO +p) _ ey

N +p) e prie (6)
holds for (as pYE€D UD,, and the inequality (6) is reversed for (as B)E€D.,.
For 2, y>0, the inequality
ty
r+y xtyy
) (4

2B Y1
2

NCE NG N i
holds for (as Y€ D UD,, and the inequality (7) is reversed for (a, ) € D,. The equalities are true if
and only if x=y.

In this paper, we generalize the geometric convexity of f » see also (5), to [ We continue

BeF1t
the investigation on the monotonicity and logarithmic convexity for the gamma function combined with the

0,0,+1

hyperbolic functions instead of the exponential function in fa_ﬁ.:]. Moreover, the inequalities we obtain
from Theorem 3 are all better than the inequalities (6), (7) and their inversed ones in some extent,
Our results are stated as follows.
Theorem 2 The function g, (x)= fa.ﬂ_ -, () is geometrically convex on (0, =) for (as €D, UD, , where
D,={(.la €R. p=0}.D.={(a. Pla €ER. p=1}.
Corollary 1 For x, y>0, the inequalities
e ytia <y ) (Gt logr)—Bra Ny + R e y e <l) (g p—logy)—pta
el TP TR e P
hold for (a» ) € D, U D..
Theorem 3 Let

X X

DI]:{(Qvﬁ)‘a<_19 [8>0} ’
<_

D, =|@p %,521},

a

D, =@ |e=p+1,p= ).

a) The function g, (x)=sinhx ‘hmﬁ(l') is strictly decreasing and strictly log-convex on (0, o) for
(@, ED UD,,.

b) The function gx(‘I)Ecoshx'hmﬂ(x) is strictly increasing and strictly log-concave on (0, o) for
(as PED,,.

¢) The function g, (&) = sinhx * (ha_ﬂ(yzr))fl is not decreasing on (0, <o) for (a, B) €
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{(as P |a€ER, =0} and is strictly log-convex on (0, ==) for (a, peDbD,,.
Theorem 3 leads to the following two corollaries.
Corollary 2 a) For 0<<x<y, the inequality
ry—+p sinhx y*t#=

I'(x +p) = sinhy 7= &
holds for (a, €D, UD,,.
b) For 0<<x<Cy, the inequality
'y +p coshx y»™#e 9
I'(x+p) " coshy x*'#™
holds for (as PYED.,.
Corollary 3 a) For x, y>0, the inequality
e I W
- sinhax sinhy 2 (10)
T +PTG R gty 277y
holds for (as py€ D UD,,. The equality is true if and only if z=y.
b) For x, y>0, the inequality
x+y aty ) (T L aty (xty\ T
< T > . J«/ coshrcoshy sinh 2 I ( ) sinh 2 ( 2 )
— max e viEa ctfe  yipa
M +pTy+p 1 cosh 22 Y, smhxsmhyJ . y% v/ sinhxsinhy  x ; y 4
2
an

holds for (as )€ D,,. The equality is true if and only if z =y.

1 EELRWIEH

1 Proofs of main results

As for prerequisites, the reader is expected to be familiar with some formulas of the hyperbolic functions, which
are used in the proofs of our results. In particular, we have the following derivative formulas:
(logsinhx )" =cothx, (cothz) =—csch’x,
(logcoshz)” =tanhx, (tanhx) =sech’z.
The equivalent assertions of geometric convexity are also needed in the proof of Theorem 2. The
following Lemma 1 is from [ 7, Theorem A,C].
Lemma 1 Let IC (0, o) be an interval. If f:I—>(0, co) is a differentiable real-valued function,
then the following assertions are equivalent:

a) The function f is geometrically convex (concave) on I ;

b) The function g(x)E% is increasing (decreasing) on I ;
¢) The function f verifies the inequalities
2f () f( ) 21
y f(x) y y f
(7)== o= (%) ey el

Now we are in a position to prove Theorem 2 and Theorem 3.
Proof of Theorem 2 It is easy to obtain that

g ()

(.r g, (x)

) =g +@ 42y @+ —logr—1.
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Let t=x+p and
ho () =¢)+ @ =Ry ) —loglt —p) —1, t € (B,°0).
By the formula (1), we have

W0 =29 O+ G gl — = 2etp) zp 1
b

B Gkt t—p
< 2 (kl—Q—z)Z((/fitﬁ))(k—O—l—ﬁ—t)Jrff—flﬁ
:i /e—1]fzf</e+z> </e+z>k</jﬁ1+t>>+2£ tiﬁ
= fil>+2(k+z></el+1+r> Zﬁiﬁ?
t(ﬁtill)_‘_E(/ngz k+11+t>+27§7ﬁ3

p+1 L2 1

TG FD ekl e g
ﬁ((l—ﬁ)t 20 =Rt =28
ca+D@—p
Since (1—)¢*+2(1—B)t—28<C0 on (8, o) for f==1, we have A", (¢)<C0. Together with 2" (¢)<C0 for
B=0, we get h (1) is decreasing on (8, =) for =0 or f==1. By the formula (3), it follows that
h, (@) >}@<¢(z>+<z—ﬁ)¢’(z> —log(z —p) — 1)

~tim(log +0(1 )+ ¢ —p(++0(-7) )~ logtt —p — 1)
=0.
g/1 (x)
g, ()
(@, ED UD..
Proof of Theorem 3 a) By logarithmic differentiation, we have
[logg,(x) ] = [logf ., , ., (@) ] + [logh,(x) ], n=1,2,

sinhx

where h, (x)=
xet

Therefore, x is increasing. By Lemma 1, we have g (z) is geometrically convex on (0, =) for

Since
e?* —1 > 2x and x < sinhx,

by logarithmic differentiation, we obtain

[1Ogh2(l‘):|,:COthI*%*1: - 2 fi<o

e —1 =z

and
[logh, ()] *f*csch%f >0 (12)

Together with Theorem 1 a) and b), we have
[logg,(x)] << 0 and [logg,(x)] >0,
and hence g, (2) is strictly decreasing and strictly log-convex on (0, =) for (ay P ED  UD,,.
b) By logarithmic differentiation, we have
[logg,(x)]™ :[logh3 ()] — [logfa g ()|, n=1,2,

xcoshx

where i, (x)=
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Since

csch’x

e’ +1>2x and 5
sech®x

=coth’x > 1,

logarithmic differentiation leads to

, 1 1 2
[loghg(x)] = tanhx +;_1 T o +1

>0
and
[logh,(x)] =sech’z — i? < cesch’z — iz < 0.
: x? x

Together with Theorem 1 ¢), we have
[loggg(x)]’ > 0 and [loggg(x)]” <0,
and hence g, (x) is strictly increasing and strictly log-concave on (0, o) for (a, p)ED.,.
¢) To obtain a contradiction, suppose that g, (x) is decreasing on (0, o). By logarithmic

differentiation, we have

[logg, (&) ] =logx +

W*gﬁ(z +B) + cothe <0

which is equivalent to

a =p—x(p(x +p) —logzx) +x + xcothx.
By the formula (3), it follows that

a>ﬁm@—x@gu+ﬁ> 4%X ;) — logz )+ x +acothx ) =

2z + ) —l—,@)
which is impossible. Thus g, (x) is not decreasing on (0, =) for (a» B)€ {(a» B) |« €ER, f==0}.
Since
Clogg, )] =[logf, ()T +[logh, ()7 .
together with Theorem 1 ¢) and the formula (12), we have
[logg, ()] >0
and hence g, (x) is strictly log-convex on (0, o) for (a, p)ED.,.

2 *

2 Remarks

* is decreasing from (0, o) onto (0, 1), we see that

sinhr  1—e™ e e _1+e™ e  coshr

7<7<1+ *)yei coshy

Remark 1. Since e~

sinhy 1—e? ¢
for 0<<ax<<y.
Thus the inequality (8) is better than the inequality (6) for (o, p) €D  UD,, and the inequality (9)
is better than the reversed inequality of (6) for (a, ) ED,,.
Remark 2. Theorem 3 b) and ¢) show that

x+y x4y 2P

F< +ﬂ> >«/cosh1coshy ( 2 > (13)
Nx+mF@+ﬁ)/ cosh TEY 2T
and
%4’,@*&
<r+y+ﬁ> sinhx+y <x+y)
2 2

> 14

TG+ RTGFR  Vsimhesinhy 275y
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for x,y>0, (a.p)ED,,.
By the derivative formulas of hyperbolic functions, it is easy to obtain that sinhx is strictly log-
concave and coshx is strictly log-convex on (0, ©). Then for x, y>0,
/sinhzsinhy /coshx coshy
ety Sty
2 2
Thus the inequality (10) is better than the inequality (7) for (e, $) €D, UD,, and the inequalities
(13) and (14) are both better than the reversed inequality of (7) for (a, ) ED,,.

cosh

sinh

. . 1 . . )
Since Slnhxcoshx:?sthx is strictly log-concave on (0, ©©), we have

x+y

v/ coshx coshy sinh 2
< ,
cosh = J2F Y +/sinhx sinhy

which implies the inequality (11) in Corollary 3.
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