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Bounds and comparison inequalities for
the triangular ratio metric

JIA Gaili, ZHANG Xiaohui
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Abstract: The purpose of this paper is to establish upper and lower bounds for the triangular ratio metric, and to
present geometric properties of the triangular ratio metric by comparing it with the distance ratio metric, the
hyperbolic metric, the Cassinian metric, and a Gromov hyperbolic metric. In particular, we show the sharpness of the
inequalities between the triangular ratio metric and these hyperbolic type metrics.
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0 Introduction

One of the aspects of hyperbolic type metric geometry deals with the comparison of the hyperbolic
metric with the hyperbolic type metrics. The invariance and distortion properties of hyperbolic type metrics
under conformal maps and quasiconformal maps also play significant roles in geometric function theory.

Recently, the triangular ratio metric was first introduced and studied in [1]. Some basic properties
and distortion inequalities of the triangular ratio metric under Mébius transformations were considered in
[ 2-3]. The behavior of this metric under quasiconformal maps was mainly studied in [ 2].

In this paper, we continue the research of the triangular ratio metric. We give upper and lower bounds
for the triangular ratio metric in the unit disk. Additionally, we compare the triangular ratio metric with
the distance ratio metric and the Cassinian metric. We also prove sharp inequalities of the triangular ratio

metric in terms of the hyperbolic metric and a Gromov hyperbolic metric.
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1 Preliminaries

A domainG C R"is an open and connected subset of the Euclidean n-space R*. For x,y € G, the
Euclidean distance between z and y is usually denoted by |x—y|. The notation d (x) for abbreviation,
stands for the distance from the point x to the boundary dG of the domain G. For all x,y in the upper half
space H"={(x,,*,x,) €ER" :2, >0}, the point y=C(y,,***,y,-1,—y,) is the reflection of y=1{(y,,*
Vau—1s¥,) with respect to JH".

1.1 The triangular ratio metric

The triangular ratio metric is defined as follows: for a domainG = R" and x ,y € G,

€ [0,1].

s¢ (x,y) =sup Edmid
KOSARTE Ny ey g

Clearly, the supremum in the definition is attained at some point ¢ € JG.
1. 2 The hyperbolic metric
The hyperbolic metrics O of the unit ball B"={z ER", ‘z ‘ <1} is defined as follows [4]:

(O”(xvy) - —
sh - 7 = Edutd ,
1= [a[" VI=[y]?
th(ou,,(ac,y): |z — v .
2 =y [P a—T«Ha—1y[»

1. 3 The distance ratio metric
Let GCR" be a proper open subset of R". For all .,y € G, the distance ratio metric j, is deflined as

|z — | )
min{d (x),d(y)} /"

The above form of the metric j,, which was first considered in [5], is a slight modification of the

j(;(x,y):log(lJr

original distance ratio metric introduced in [ 6-7].
By [8, Lemma 2 41(2) ] and [9, Lemma 7. 56 ], for all x,y€ G,
Jelasy) <p . (x,y) < Z2j,(x,y),
where GE{B",H"}.
1.4 The Cassinian metric
For a domain G = R" and .,y € G,

c.(x,y) =sup Eiubl :
; /,ea(,"I*])Hy*p‘

The term Cassinian metric was introduced by Ibragimov in [10], and the geometry of the Cassinian
metric including geodesics, isometries and completeness was first studied there.
1.5 The Gromov hyperbolic metric
For a domain G & R", the u-metric is defined by
x—y |+ max{d(x).d(y)) .
u(;(f,y):Zlog‘ | , x.y € G.

d(x)d(y)

By [11, Theorem 6], for x,y € B",
(oB”(.T,y)guB,,(.r,y)g?)pB”(.r,y) (1)

Both inequalities are sharp.

2 Bounds of the triangular ratio metric

This section is devoted to looking for upper and lower bounds for the triangular ratio metric in terms
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of the quantities, in the unit disk. In the special case |x|=|y|. we have been able to find an explicit

formula for sz (x,y).

Lemma 1[12, Theorem 3. 1] Let a=a+if,a,8>>0, be a point in the unit disk. Then, we have

S R TUAY I
s (asa) = RIS
7 B? ’ -

2 2
1 1
ol a(+0) >+
Lemma 2 Let x,y€ B? with x=ty, t€ [0,1].
a) If t1==0, then
‘ =y
.\Bz(.'r’y)*z_ ‘1‘_ ‘y‘.
b) If t < 0, then
‘ e —y]
D T = T

Proof: From the definition of the triangular ratio metric it follows that,
if 120, then

so(x,y) = Edmbd = Edmbd ;
B A—lzDh+A—= |y 2—|z|—|y]
if £<C0, then
r—y xr—y
R T N eSS FI IR Ea P
By Lemma 1, we shall give an explicit formula for s, (x,y) in the case when |z |=|y|<1.

Lemma 3 Let x,y€EB*\{0},.2=(x,,2,) and y=(x,,—x,).
a) If |2, |<<|x|?, then

.\‘Bz(x,y):‘x‘.
b) If |z, [=|x]|?, then

, |

[T =2l [+ 1

|z

S g2 (lay) =

) . ) 1 :
Proof: Without loss of generality, we may assume that =, ,2,>>0. If 2, <|x|", then |z, — <? ,O) +a,t >
1, ~—(lo) ~LopyL 1, we h
1 x 5 5+ By Lemma 1. we have
sBZ(I,y):‘I‘.
. .. , . ) 1 1
Similarly. the condition 112‘1‘ implies x*(;,O) <?, thus
S g2 (1’y)= - e .
|22 =22, +1
’ ’ / ” . ;s + X ’ x+ X /
Theorem 1 Let z,y,x ,y 2", y" € B?* with x :sz_ ‘sz‘é, v =T2y+ ‘rzy‘f, 2=
xty Ja—y]| , oty |a—y]|
5 5 YT + 5 & where
T+
7 x+y#F0,
£ = |z + ]|
e x +y=0.

and =1i¢. Then
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sBZ(I”,y”) < s, (x.y) <s82(1/,y/),
where
ESntd
s »(x, < —F 2
P y)\Z—\ery\ (2)
and
. 2 . 2 2 L 2
\1+y\;\f SN ‘I+ykﬁx+y\§\1 S
spe(a,y) = ) ) (3
ESsid ety [P+ e =y
‘ ety :
(Je+y[=2"+ ]z =y
Proof: Since the result is trivial for the case x =—y by symmetry. Then we may assume that x % —y.

We easily see that the extremal ellipse with foci &,y is larger than the extremal ellipse with foci z”,
", hence
5 (xhy) <ospe (z'.y)).
To prove inequality (2), we have

’ xr+y

x Zm(‘l‘+y‘— |z —y D andy/ziz‘it:;‘(\l+y‘+ |z —y]).
It is easy to see that z'=¢y", €[0,1] and |2’ |<|y"].
Case (| ). If t=0, then |2'|=0and |x+y|=|2—y|. By Lemma 2 a), we have
[y | — ]

S, (z"vy") =5, 0.,y =

2—1yT 2= Ta+sI

, xty|—|lx— , aty |+ |x—
Case(ii).lf/t>0,then\1‘\Z‘r y\z\r y‘and‘y‘Z‘T y‘z‘r y‘.ByLemmaZa),we

have
=y =y
2— 12— [y 2—lx+y|

Case (i ). If +<C0, then |2"|= ‘Iiy‘;‘ijy‘ and |y’ | = ‘Iiy‘;‘ijy‘. By Lemma 2 b),

s (X ) ésbz(f/,y/) =

we have

|2 — '] |z — ]

"z(‘s )g‘o(‘/s /): 7 7T .
YIS T Y T T = 1y 2= [ty

To prove inequalities (3), we have

" __ x+y . - " __ r+y . o
x—72‘1+y‘(‘x+y‘ ilr—y]|) and y—iz‘ery‘(‘I-ﬁ—yH—z‘x v ).
Case (jv). If \x—l—y\<‘x+y‘_g‘j_y‘_, then %<‘x”‘z. By Lemma 3 a), we have

2 — 2
552(1’}))>«Y82(17//’y//):‘f”‘: ‘T+y‘ ;‘x y‘ )
. 2 _ 2
Case (V). If ‘1‘+y‘>‘1+y‘ —;—‘x v ,then%}‘xﬂv.ByLemmaSb),Wehave
|z — 5]

5 (xhy) =5, (2", y") =

Te o=+ e —»T7

3 Comparisons with other related metric

In this section, we compare the triangular ratio metric with the distance ratio metric in the convex

domain. We also study geometric properties of the triangular ratio metric by comparing it with the
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hyperbolic metric, the Cassinian metric, and a Gromov hyperbolic metric. In particular, we show the
sharpness of the inequalities between the triangular ratio metric and these hyperbolic metrics.
Theorem 2 Let G be a proper convex subdomain of R". Let 2,y € G and t =e/¢“"* —1. Then

t L
< .\'(;(1’9_}/) <

t+z N/Eve
Both inequalities are sharp.
Proof: Without loss of generality, we may assume that d (x)<{d (y). Then t:%. Choose z €
x

JG such that d(z)=|x—=z]|. Let y Eray(x,x—2)={x+1t(x—=2):t>0} with |y—z|=|y —z|. Let
H;,x€ Hg;, be the half space whose boundary is orthogonal to [,z | at the point 2. It is easy to see that
GCH,. Let B,, be the convex hull of B" (x,d (x))UB"(y.d(y)). By the domain monotonicity property
of Sg s W€ have
s, (ay) <s (ray) <sp,, (xhy),
G
where
|z — ] |z — ] t

BCAE ):d<.r>+d(y’> T la—ylH2d) t+2

s (xay) =
G

H H

and
‘x—y‘ _ t
2/d* (x) + (Jo—y[/2)? 4+ 1

For the sharpness of the left-hand side of the inequality, we consider the domain H" and two points

SB Y(\Tsy):

x,y &€ H" with the line L (x,y—x) passing through x with direction vector y —x which is perpendicular
to the boundary dH".

|z — | ot
r—yl+2dx) t+2

For the sharpness of the right-hand side of the inequality, we consider the domain H" and two points

S (Xay) = |

x,y€& H" with the line L (x,y—x) parallel to the boundary dH".

s (2hy) = : Edmbd S—— .
2/d*(x) + (Jx—y|/2)° 1P+ 4

Theorem 3[ 3, Lemma 2 6] For x,y€E B",
{OBN (Iay) {()B”(Iay)

th="— <, () < th

Both inequalities are sharp.

Proof: For the inequalities see [ 3, Lemma 2 6.

For the sharpness of the left-hand side of inequalities, let x =te; and y=(t+(1—1)*)e, with t € (0,
1). Then

o P ) (1—1)* _ 1 "
2 A—0D"+A—HA—G+a—nHsH 1+
By [8, (2 29)] and (4),
o O 0 th(p, (. 3)/2) _ A—0)/(1+%) _ 1—¢ '
4 1+ /1—th’ (o, (xy)/2)  1+/1—A =0/ A+H? 1+ + Vi +0 + 20
Since
o (2ay) = (1—8° : :1—t,
l—t+1—G+Ad—0°) 1+1

then we have
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_th(p, /D QA4 VR T 141
lim =lim =lim =1.
=0 s (2 y) >0 A—=0/a+0 S0l 2
For the sharpness of the right-hand side of inequalities, let x =—y=te, with t € (0,1). Then
N n(l'ay) — :
lim B .2t/ t)+(l+t)):1im1+t _—

1 th(p . (x,y)/2) o 2/ VAT —¢5) e 2
Theorem 4 Forx.,y € B", we have
u () U (xsy)
thT < s (xhy) < thf
Both inequalities are sharp.
Proof: These two inequalities are easily derived from inequalities (1) and Theorem 3.
For the sharpness of the left-hand side of the inequalities, let x =te, and y=(t+(1—1)")e, with 1€
(0,1). Since
(1= +1—1 (2—1)*

uB,,(:(,y) =2log =log y
A—0AQ—r—aA—0% t

then we have
1. SB,I (f ’y> 1
0 th(u, (xay)/12)

Therefore, the left-hand side of the inequalities is sharp.

For the sharpness of the right-hand side of the inequalities, let x =—y=re, with 1€ (0,1). By [ 11,
Theorem 6 | and Theorem 3, we have
. $pn (253D .
o1 thlu, (2,y)/2) )
Therefore, the right-hand side of the inequalities is sharp. []

Theorem 5 Let .y € H’ andxeBZ($,d<y>) or yE B (

xtx

vd(x)),r=min{d (x).,d(y)},
we have
%L'Hz(x,y) < s (aay) e ().

Proof: Without loss of generality, we may assume that d (x)<{d (y). We have

N
.st(z,,y)—‘?_y‘.
Let = be a point on the segment [x,x |[1dH?, then ¢, (x ,y)}ﬁ and
" d(x)|y—=]

SIIZ(X7y) ‘y—z‘

d(x) <r.

¢ (xay) R

Hence the second inequality holds. For the first inequality,

eyl feoyl _do Je=s] 7o

St (T3 =95 2 a0 2 d(xd(y) = 2

Thus ’

r
?CHZ (x,y) <SH2 (x,y) < rC 2 (me).D

4  Concluding remark

Several authors have studied the triangular ratio metric in subdomains of the complex plane and
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Euclidean n-space, and proved various inequalities and the behavior of this metric under Mobius
transformations, bilipschtiz maps and quasiconformal maps. In order to understand the geometric
properties of this metric, we establish upper and lower bounds for the triangular ratio metric and compare
it with some hyperbolic type metrics. The results will play an important role in the study of the inclusion

relations of the related metric balls.

References:

[1] Klén R, Lindén H, Vuorinen M, et al. The visual angle metric and Mé&bius transformations[ J ]. Computational Methods
and Function Theory, 2014, 14(2/3): 577-608.

[2] Chen J L, Hariri P, Klén R, et al. Lipschitz conditions, triangular ratio metric, and quasiconformal maps[J]. Annales
Academiae Scientiarum Fennicae Mathematica, 2015, 40: 683-709.

[3] Hariri P, Vuorinen M, Zhang X H. Inequalities and bi-Lipschitz conditions for the triangular ratio metric[ J]. Rocky
Mountain Journal of Mathematics, 2017, 47(4), 1121-1148.

[4] Beardon A F. The Geometry of Discrete Groups M]. New York: Springer, 1983 40.

[5] Vuorinen M. Conformal invariants and quasiregular mappings[J]. Journal D'Analyse Mathématique, 1985, 45 69-115.

[6] Gehring F W, Osgood B G. Uniform domains and the quasi-hyperbolic metric[ J]. Journal dAnalyse Mathématique, 1979,
36 50-74.

[7] Gehring F W, Palka B P. Quasiconformally homogeneous domains[ J]. Journal [’Analyse Mathématique, 1976, 30; 172-
199.

[8] Vuorinen M. Conformal Geometry and Quasiregular Mappings[ M |. Berlin: Springer, 1988: 29.

[9] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[ M ].
New York: John Wiley & Sons,1997. 151.

[10] Ibragimov Z. The Cassinian metric of a domain in R"[J]. Uzbekskii Matematicheskii Zhurnal, 2009(1); 53-67.

[11] Zhang X H. Comparison between a Gromov hyperbolic metric and the hyperbolic metric[ J]. Computational Methods and
Function Theory, 2018, 18(4). 717-722.

[12] Hariri P, Klén R, Vuorinen M, et al. Some remarks on the Cassinian metric[ ] ]. Publicationes Mathematicae Debrecen,

2017, 90(3/4) . 269-285.
(RERE: R #)



