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Some properties of the complete p-elliptic integrals
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Abstract: In this paper, the authors present some properties of the complete p-elliptic integrals A, () and ?p (r) by
showing the monotonicity properties of certain combinations defined in terms of A, (r),?l, (r) and elementary
functions, thus extending several results of monotonicity and concavity for the complete elliptic integrals to A, (r)
and FP ().
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1 Main Results

In the early 19th century, Gauss made outstanding contributions in the field of hypergeometric
function. Since then, many mathematicians carried out in-depth research on this basis. For a ,b,c € R with
c#0,—1,—2,++, the Gaussian hypergeometric function is defined by

- ((l’n)(b977)
Fla,bsc32) =F (a.bics2) = —
B R ,,2:0 (c,nn!

where (a,0)=1 for a0, and (asn)=a(a+1)(a+n—1) for n € N is the lifted factorial function,

(| z <D (D

while N is the set of positive integers (cf. [1]). It is well known that many special functions and even
some elementary functions are the particular or limiting cases of F(a,b;c;z). For example, the well
known complete elliptic integrals of the first and second kinds are defined by

J/(:/((1"):T[F(I/Z’I/Z,lyrz)/270<r< 1’

A =L =AG1T—+2),
A0) =x/2,A(1) =00

and
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JL‘,’(;’) =xF(—1/2,1/2;1;r%)/2,0 <r <1,
& ’ =& /(T) :c"1(\/ 1— 7’2 )
E0) =n/2,£(1) =1
respectively (cf. [1]). Recently, the complete p —elliptic integrals were introduced (cf. [2]), which are
related to the generalized p-trigonometric functions with the parameter p &€ (1,00),

For x€[0,1] and p € (1,90), the inverse p-sine function is defined by

x

arcsin,x :L A=)y Vdt=aF 1 /p,1/ps14+1/psx?),
by which the constant n can be extended to following
1
n, =2 arcsin, 1 :2L ﬁ :%B (%1 —%):m
where B is the classical beta function. The inverse of arcsin, on [0,x,/2] is denoted by sin,, which is
called the p-sine function and appears in the eigenfunction of Dirichlet problem of one-dimensional
p-Laplacian (cf. [2—5]). If p=2, then sin,x=sinx is the usual sine function, arcsin,x=arcsinx and r, =m.
Throughout this paper, we always assume that p € (1,20), and let ¥'=(1—r*)V* for r&€[0,1]. For
r&(0,1), the complete p-elliptic integrals of the first and second kinds are defined as
Ly =AL,)=n,FQ/p,1—1/p315r")/2,
A, =0, G)=1,G"),
IT,)(O) =x,/2,L,(1) =co
and
E,=E,r)=n,F(—1/p.1/ps1;r*)/2,
/=& (H=E,G0),
E,(0) =m,/2,£,(1) =1
respectively, which have the following integral representations

. () J"p /2 dt Jl dz
L, (r) = = -
’ o [1—(rsin,p)? ]V 0 (1 —¢2)HVe (1 — plyr)t e

and

n, /2 ] — pPy? 1/p
= sin,,t)”]l”’dt:J (7r> dt

Ar () :J o\ 1 —1¢*

(cf. [2, 4. Clearly, £, =A and &£, =& in the case when p=2.

It is well known that the special functions above-mentioned have many applications in several fields of

0

mathematics, as well as in physics and engineering (cf. [1-8]). Some properties of the complete p-elliptic
integrals have been revealed. For instance, in 2016, Takeuchi proved the following generalized Legendre
relation and derivative formulas (cf. [2])

Ty

A, E,G)+A4, D) E,)—L,) L, (r) = 5

dTp _?p(?") - T/p Tp(?’) d?p _?p(r) *Tp(r)

dr rr’? T dr r 2
Zhang recently proved the following double inequality (cf. [4])
arth,r TG < n?p arthpr’
where arth, is the inverse of generalized hyperbolic tangent function th, and satisfies the formula
d 1 arth,x - a™
- h J - ’ - 3
dx (arth,x) 1—=x? x = pn—+1 Sk

In 2018, Huang et al revealed several properties of A, and &, (cf. [8]).
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However, the study of the complete p-elliptic integrals is still in the initial phase, and many of their
properties need to be revealed. In particular, one task of such kind of studies is to extend the known
properties of the complete elliptic integrals to the complete p-elliptic integrals. Motivated by this, the main
purpose of this paper is to present some properties of the complete p-elliptic integrals by showing the
monotonicity properties of certain combinations defined in terms of the complete p-elliptic integrals and
elementary functions, thus extending several well-known results for the complete elliptic integrals to the
complete p-elliptic integrals. In particular, we shall extend [7, Lemma 3. 327, [9, Theorem 2 57, [10,
Lemma 5. 2(7)], [11, Theorem 2 6, 2 9], [12, Theorem 3. 1] and [ 13, Theorem 1. 3] to the complete
p-elliptic integrals. We now state our main results below.

Theorem 1 For ¢ € R, define the functions f,f,,f5 and f, on (0,1) by f, (r) =4, (r)T/p (r,

L2 =L, ) +A ) f ) =GrDP LA, )+ A G ],
i) =" —r{[E ) —r £ (D] —[E, ) — "7 L, () ]).

Y#7 and increasing on [27'?,1), and log-convex on (0, 1).

a) f, is strictly decreasing on (0,2
Moreover, f,(x) = f,(y) if and only if rt =y or x = y’.

b) If1— p?/(p —1) < ¢ << 0(c >0), then f, is increasing (decreasing) on (0,2 "? ] and decreasing
(increasing, respectively) on [27"?,1). Moreover, if 1 — p*/(p —1) << ¢ << 0 (¢ > 0), then f, is concave
(convex, respectively) on (0,1). In particular, for » € (0,1) withr £ 277, if 1 — p*/(p — 1) < ¢ << 0, then

(r,/2) <A, (D HA, (r <24, (27Vr)
and if ¢ > 0, then
Ly A" G =>24, (277)",

¢) f, is strictly increasing on (0,2 ? ] and decreasing on [27V?,1), with f;(0") = f,(17) =0 and
fa 2V =4,27r) /2.

d) f, is strictly decreasing on (0,27"?] and increasing on [27"?,1) with f,(07) = f,(17) =1 and
fio27ry =o.

Theorem 2 a) The function g, (r) =&, (r) & ; (r) is strictly increasing on [0,2"*

] and decreasing
on[277,17]. Moreover, g,(x) =g,(y) ifandonlyifx =yorx=y’.

b) Forc € R andr € [0,1], let g,(r) =&, (r)° —0—?;(0‘. Ife € (0,1] (¢ € (—,0) ), then g,
is strictly increasing (decreasing) on [0,2 "? ] and decreasing (increasing, respectively) on [27V7,1].

¢) The function g;(r) = Gr)H’[E,(r) Jrf; (r)] is strictly increasing on [0,27"? ] and decreasing
on[27V*,1].

Theorem3 Forc€eE R, n€N=NU {0} and r€(0,1), let

__@=D*+1 A/pn+DA—=1/pn+Dntp+1D
ST o (p— 1D B 2[n4+D! '
L /P A —1/p k), oy
P,(r)= 2 ﬁz; 1 r andQn(r)—kz;p%k_’_l,

and define the functions A, ,h,,h; and A, on (0,1) by

hiGr)=r"" L, )/ E, ) hy(r) =A,(r)—c «arth,r —x,/2,
zi/ék—r/’) Ii(r)z and h,(r) = Ar () = P, (r) .
E,r) =" A, ) (arth,»)/r —Q, (r)
a) h, is decreasing if and only if ¢ <l p+1, withh,((0,1)) =(0,(x,/2) ). If ¢ > p+1, then there

exists a number », € (0,1) such that i, is increasing on (0,r, ] and decreasing on [ r,,1).

ha(r):

b) h, is strictly increasing (decreasing) on (0,1) if only if ¢ <C 0 (¢ =1, respectively), and if 0 <<
¢ << 1, then there exists anr; € (0,1) such that &, is strictly decreasing (increasing) on (0,7, J([r;,1),

respectively). Moreover, if ¢ < 0, then h, is convex on (0,1).
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) hy is strictly increasing from (0,1) onto (a.xn5/4).

d) h, is strictly decreasing from (0,1) onto (1,8). In particular, forr € (0,1) andn € N,

th, th,
PG+ Q) < T () <P,,(r)+,8(ar Q) 1
2 Proof of Theorems
2.1 Proof of Theorem 1
a) Set f5(r)=A~ (r) (£, —7r"" £, ()] . which is strictly increasing from (0,1) onto (0,x,/2) by
[4, Lemma 3. 4(1) &(6)]. By logarithmic differentiation and (2),
Gy ! E,(r)—7'? A, ()
f1( R I Ay (r) rt
1 “/(T)—r T//)<r)_f5<”)_f5(7’/) (5)
Fle e e T;(r) r'r o rr/"fl(r)

It follows from (5) and [4, Lemma 3. 4 (1) & (6)] that the function r > f,"(r)/f1(r) is strictly
increasing on (0,1), so that f,” is negative (positive) on (0,27#7 ([27V?,1), respectively) and has a
unique zero r =2 ? on (0,1). Hence the piecewise monotonicity and log-convexity properties of £, follow.

Clearly, if x=yor x=y", then f,(x)=f,(y).Conversely, suppose that f,(x)=Ff,(y) withx # y.
By the symmetry, we may assume that = << y. Then by parta), 0 <<ax <<2"? <y <1, 2" € (27,1,
f1(x) =f(x)=/f,(y). and hence 2" = y.

b) Let f5(r) =f;() — f. ('), where

[,y =r" L ; DOV e r P [En ) — " L, ().

It is clear that f; is strictly increasing on (0,1) if ¢ = 1.1f 1—p?/(p —1) << ¢ <1, then the function r
=t L /p (r)" is strictly increasing on (0,1) by [4, Lemma 3. 4(1)&.(6)], and so is f;. Hence if
1—p*/ (p —1) << c << oo, then f; is strictly increasing from (0, 1) onto (0, (x,/2)'™) so that f; is
strictly increasing from (0,1) onto (— (x,/2)",(x,/2)"*) with f;(27"?) =0. Clearly, 1 —p*/(p —1) <
0. By differentiation and (2),

rr’? [Zp(r)f;(r)jhfz/(r)ZCfa(r) (6)
yielding the piecewise monotonicity property of f,. It follows from (6) that
) Sy —r"" T P E ) —rt LD
S (r)zfg(r)z » () 7; » () ,/l _— » ! ’ _, 1 _ 7
¢ r’ A () r'’ RCOR

By investigating two cases whenc > 1 and ¢ << 1, and applying [4, Lemma 3 4(1)&(6)] we see that the first
(second) term in (7) is strictly increasing (decreasing) on (0,1) if 1 —p*/(p — 1) < c <o (—1/(p —1) <
¢ < oo, respectively). Clearly, 1 — p?/(p —1) <—1/(p —1). Hence if —1/(p —1) << ¢ < oo, then [
is strictly increasing on (0,1). Consequently, it follows from (7) thatif —1/(p—1) <c<<0 (¢ € (0,c0)
), then f, is concave (convex, respectively) on (0,1).
¢) The limiting values of fg are obvious. Differentiation gives
P = f) =8, — (r)—Q—(i)*l)[r/’)/( ) —r* &’ (r)]—Q—p[r/”Z/p(r)*r” AL, G

By [4, Lemma 3. 4], f, is strictly decreasmg on (0,1) with f,(27"?) =0. This yields part ).

d) Thel imiting values of f, are obvious. Since the function f,, (r) =&, (r) —r'? A, (r)is strictly
increasing from(0, 1) onto itself by[ 4, Lemma3. 4(1)], f, is a product of two positive (negative) and
decreasing functions on(0,2 "?)((27"?,1) ,respectively).Hence theresult for f, follows.[]

2.2 Proof of Theorem 2
a) Letg, (r)=&",) e r "[A,(r)—&, ()], which is strictly increasing from (0,1) onto (x,/(2p) .,
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o) by [4, Lemma 3. 4(4)]. By differentiation and (2),
ritg " =g, — g, (),
which is strictly decreasing from (0,1) onto (— co,o0). Hence the piecewise monotonicity of g; follows.
The proof of the remaining conclusion is similar to that of Theorem 1(a).
b) Let g;(r) =g, (r') — g,(r), where g (r) =r* &, T AL,G) —&,G)]. Then by (2),
r e, (r) =cgs () (8
If —oo<Cc¢ <1, then g is strictly increasing from (0,1) onto (= /(2°p),o) by [4, Lemma 3. 4(4)], and

7y =0. Consequently, the result for

hence g5 is strictly decreasing from (0,1) onto (— co,c0) with g; (2~
g, follows from (8).

¢) Part ¢) follows from the piecewise monotonicity of g:(r) = (+r')? and part b) with ¢ =1.[]
2.3  Proof of Theorem 3

a) By differentiation and (2),

r A, (DT ER ), hs ()
— — h =c — =c—h 9
5,9(1") —r/P /(.‘,,(r) 1(7') . h<;(r) . 7(7’) ( )
where h; (r) =h:;(r)/hs(r),
() —&,0) E, ) —r"" L, ()
h;,(r):p*r/”%andh\(r): S 7’ P
rt £, ’ rt A, ()

By [4, Lemma 3. 4(3).(5)], h;(hy) is strictly increasing (decreasing) from (0,1) onto (p — 1/p,p)
(0,1 —1/p), respectively), so that the function h; is strictly increasing from (0,1) onto (p + 1,00),
Hence by (9), h, is strictly decreasing on (0,1) if and only if

c << inf h; (r) =h,(0") =p + 1.

0<"r<_1

The remaining conclusion in part a) is clear.
b) Differentiation gives
r/Ph/Z(r):hg(r)E[?P(r)—r/P L, ()] r—c (10)
which is strictly increasing from (0,1) onto (— ¢,1 — ¢) by [4, Lemma 3. 4(1)]. Hence h, is strictly
increasing (decreasing) on (0,1) if and only if ¢ <C0 (¢ =1, respectively). In the case when 0<c¢ <1,
the piecewise monotonicity of A, is clear. If ¢ < 0, then hy is positive and strictly increasing on (0,1), and
hence by (10), we see that h, is convex on (0,1).
o) Letho(r) =(x,/2)" —7r"" £, (r)?* and hy(r)=E,G)—r"? L, (). Then hy(r)=ho(r)/hy (),
he(0) =h,,(0) =0 and
(p—Dhy )/ hy G =1, {p —2[E, ) —r"" L, ]/ [r" A, (r) ]} (1D)
which is a product of two positive and increasing functions by [4, Lemma 3. 4(3)]. Hence by [ 7, Theorem
1. 25], hy is strictly increasing on (0,1). Clearly, h,(17) == /4. By I’ Hépital’s rule, [4, Lemma 3. 4],
and by (11), h;(0") =5, [(p — 1’ +1]/[2p(p — D] =a.
d) Leth, (r) =4A,(r)—P,(r) and h, () = (arth,r)/r —Q, (r). Then by (1) and (3),

oy () :% 2 (I/P,k)(} _Zl/p’k)rpk :ﬂr/)(uﬂ) Zakrpk ,
S (k1) 2 5

oo Dk

hi, (r) = Z perr 1 = Ot 2/),\,7’”" and h,(r) =
0

k=n+1

() w2009
hi (r) 2 Z“bkrﬁk’
wherea, =(1/pk+n+ DA —1/pk+n+1D[k+n+1D1 1% and b, =1/[pCk+n+1)+1]. Putting

¢, =a,/b, . we have

Ck+1/6'k :1*EP(/3 —|—n—|—1)]72 <1,

which shows that the sequence {c,} is strictly decreasing. Hence the monotonicity property of h, follows
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from [14, Lemma 2 17.
Clearly, h,(0") =c =,/2=p. Applying I’ Hopital’s rule, we obtain the limiting value A,(1")=1. The
double inequality (4) is obvious. []
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