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Some properties of the (p, g)-Grotzsch ring
function and (p, g)-Hibner function
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Abstract: The authors present some properties of the (p,g)-Grotzsch ring function 7, () and the (p,q)-
Hiibner function _17,,(r) which are defined by the complete (p,q)-elliptic integrals of the first kind. by showing
the monotonicity and convexity properties of certain combinations defined in terms of z, (r), A7,, (r) and
elementary functions, thus extending some well-known results for the Grotzsch ring function and the Hiibner function
(r) and AL, ,(r).
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1 Main Results

In the 18th century, the mathematician Euler studied the analytical properties of hypergeometric
functions deeply and gave the integral expression of hypergeometric functions. At the same time, Gauss
promoted the rapid development of hypergeometric functions, which aroused more and more
mathematicians’ interest in hypergeometric functions. For real a ,6 and ¢(¢40,—1,—2,+:+), the Gaussian

hypergeometric function is defined by

oo

Flasbicsn) =F (abiese) = ) @)

~ (c.,nin!
where (a,0)=1 for a#0,and (asn)=a(a+1)+(a+n—1) for n € N is the shifted factorial function,

while N is the set of positive integers (cf. [1-2]). It is well known that the hypergeometric functions have

I“(‘f |<1)’

many applications in mathematics, physics and engineering, and many other special functions and even

elementary functions are the particular or limiting cases of F (a,b;c;x). For instance, the complete
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(p,qg)-elliptic integrals introduced recently are particular cases of F (a,b; c; x) and related to the
generalized (p,q)-trigonometric functions.

For p, g€ (1,00) and x €[0,1], the generalized (p ,q)-arcsine function is defined by
arcsin, ,x :J; (11— Vrde,
by which the constant © can be extended to the following
n,., =2 arcsin, ,1 = ZJ": (A—r)y Vrde 233(1 —1/p.1/¢) (D

where B is the beta function. The inverse of arcsin, ,x on [0,x,,,/2] is called the generalized (p,q)-sine
function denoted by sin,, which is an eigenfunction of the Dirichlet problem for the (p.q)-Laplacian and
can be extended to a 2x,,,~periodic function on R (See [3-4]).
For p, g€ (1,20) and r € (0,1), the complete (p,qg)-elliptic integrals of the first and the second
kinds are defined by (cf. [5])
J/(,‘M =A,, () =x, FA1—1/p,1/q;1—1/p +1/q;r")/2,
L =0 =407, (2)

»
L(f,),q (0) =mn,.,/2,A,,(1) =c0
and
Jc‘fﬁ,q =&,,0r) =n, F(—1/p,1/q;1—1/p+1/q:r")/2,
glo=&", H=£,,6D, (3)
&, =x,,/2,£,, ()=1
respectively. Here and hereafter, »'=(1—r")" for r&€[0,1]. Clearly, A, ,=A and A=A

/

&, ,=<& and &', =&") are thecomplete elliptic integrals of the first(second,respectively) kind.

In the sequel, we always assume that p,q € (1,c0),and let a=1—1/p,b=1/q,c=a+b, d=

p—2+V5p"—8p+4 oy saby _ 1T 20p—D
D) . =R (a.b) and p=b 1 2%%) q[ =D

¢(a)—¢(b) is the Ramanujan R-function (or the Ramanujan constant), y =0. 577215+ is the Euler

}.Where R(a.b)=—2y—

Mascheroni constant, and ¢ is the classical psi function.

Let m(r)=20—r)HA A () /mand m, () =2r""Apa (XA, () /7, Tt is well known that the
Grotzsch ring function x (r) == A" (r)/[2 A ()] and the Hiibner function A7 (r) =m (r) + logr are
indispensable in the studies of the theories of quasiconformal mapings and Ramanujan’s modular equations
(cf. [2,6-11]). We now extend x(r) and A7(r) to the following

oy A g ()
2 A,
For r € (0, 1), and call them the (p, g)-Grotzsch ring function and the (p, g)-Hiibner function,

a,,(r) = sM, ) =m, ,(r) +logr D

respectively. These functions can play a role in the study of a kind of modular equations.

It is natural to ask whether the known results for () and A7(r) can be extended to z, (r) and
M, (). This is a problem worth studying. Motivated by this, the purpose of this paper is to study the
properties of the functions 7, (r) and A7, ,(r), and extend several well-known results for p (r) and
M) to g, (r) and A7,, (r), by showing the monotonicity and convexity properties of certain

combinations defined in terms of z, (r),. A7, (r) and elementary functions. We now state some of our

bra
main results.

Theorem 1 a) The function A7
then 17,

b) The function f,(r)=m,,(r)/log(1/r) is strictly increasing from (0,1) onto (1,c0).

psq

is strictly decreasing from (0,1) onto (0,8). Moreover, if g=d ,

., 1s concave on (0,1).
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c) For each t € (0,1), the function f,(r)=m, ,(rt)—m,,(r) is strictly increasing from (0,1) onto
(—logt.m,.,(¢)). In particular, for all .z & (0,1),
max{m, ,(r) —logt.m, ,(t) —logr} <m,,Gt) <<m,,(r)+m,, &) (5)
max{A1,  (r) A, ()} < At, ,CGre) << A, )+ Al, (1) (6)
d) For each « € (0,00), the function f;(r)=am,, (r)—m, ,(r*) is strictly increasing (decreasing)
from (0,1) onto ((«a—1)B,0) ((0,(a—1)B)) if and only if 0<Ca<{1 (a>>1, respectively). Moreover, if a
€ (0,1), then for r&(0,1),
am . (r) <<m,,(r*) <<am,,(r)+p(0—a) (7
and if ¢ € (1,00), then each inequality in (7) is reversed.
Theorem 2 a) The function g, (r)=p, (r)+logr is strictly decreasing and concave from (0,1) onto
(0.8). and g, (r)=g, () /r'* is strictly increasing from (0.1) onto (8.o0).
b) g3 (r)=p, (1/r)/logr is strictly decreasing and convex from (1,°) onto itself.
¢) g,(r)=g,(r)—logr’ is strictly increasing and convex from (0.1) onto (8,).
d) g:,(r)E/}/),q(r)log(l/r/) is strictly increasing from (0,1) onto (0,x, ,>/4).
e) gs(r)=[p—g1(r)]/r is strictly increasing from (0,1) onto (y,f). In particular,
ﬁr/"<ﬁp.q(r)+logr<ﬁr/"+(‘8—77)r“,r e (0.1 €))
Theorem 3 For each € (0,1).define the functions h,.h, and hy on (0.1) by Ay (r)=p, (rt)—
Gy, () sy =p, Go)/p, () and hy (D=2, (Vri)—g, ().
a) The functions h, and & are both strictly increasing on (0,1). with ranges (—logt.z, (2)) and
(1,00), respectively. In particular, for all »,t& (0,1),
i, ) Flog(l/t) <, Gt) g, G)+p, (&) D)
b) The function h, is strictly decreasing from (0,t] onto [ﬁp‘q (£),B—logt), and increasing from

[z,1) onto [ﬁp_q(t),Z/j/).q &Jt)). In particular, for all r,z€ (0,1),

)+, (<2, (Vri)<g, (r)+ max{g—logt.2u, (i)} (10
with equality if and only if r=t.

2 Preliminaries

First, let us recall the following generalized Legendre relation and derivative formulas™

s Tpug

KlaEra F Koy Eply— Ao £,y = > (11)
ALy Epy =7 Ao A, E = A, (12
dr rr’ Todr rr’
L“‘l)-q _ /("/)-,q _L“‘/).q L"‘/)/J/ — gl /('/‘)-,/q_c“ﬂl)-/q (13)
dr 4 pr Todr 4 pr’e
and the well-known asymptotic formula
8
A, =log S 4+ 01— r)log(1 — ') (14)
r
as r—1. Applying (11) —(13), one can easily prove the following lemma.
Lemma 1 Forr &€ (0,1),
dﬁp,q(r>7_ Tf?)Aq o 1 (15)
dr drr’t £3, 7 F (asbse;r?)?
dm,.,(r) 1 . ‘ ‘
/;1:’ - e r[n/’w —AA,, pa— 2(g — 21" Ay A'p./d:l
peq

1 2 . Epe— 7 Ky
=——— "L, L @—2%) (16)
b-q

r Tp.q
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Next, we present several properties of A, and , which are the analogues of the related

<
pea < pg

properties of A" and & (cf. [8, Lemma 5 2(8), (14) & 5 4(3) (] for A ,, and &, .

Lemma 2 Let d=an, /(2¢) and p=m},,(1—2ab/c)/4.

a) H, (r)E(/ffp,q—Tt,,,q/Z)/log(l/r’) is strictly increasing from (0,1) onto (§,1).

b) H,(r)=(x}.,/A—r""A% ) /r" is strictly increasing from (0,1) onto (p,sx,.,"/4).

) Let Hy(r)=Q2/q) &, (1+(1*2/q)r/"/(,‘/,.q. Then H; is strictly increasing from (0,1) onto (x,,,/2,
26) if and only if 1<{qg<C{2(1—1/p), and H is strictly decreasing from (0,1) onto (2b,x,,,/2) if and only
if geS,=[2,)U{q|q€ (1,2),¢q=2—1/(p—1). Moreover, if ¢€ (1,2] with ¢=2—1/(p—1), then
H ; is concave on (0,1).

d I 1<g=<<2(1—1/p) (g€ S,) s then H, (r)=r""/A
from (0,1) onto (x,,/2,2b) ((2b,m,,/2), respectively).

Proof a) Let H;(r)=A,,—m,.,/2 and H;(r)=log(1/+") for r€ (0,1). Then H;(0)=H,(0)=0,
H,(r)=H:(r)/Hs(r), and by (12),

H's(r)/H ) =&, , —r'"" L, )/r,

which is strictly increasing on (0,1) by [ 6, Theorem 1(a)]. Hence the monotonicity of H; follows from
[2, Theorem 1. 25]. By 1’ Hépital’s rule, we obtain the values H, (0" )=¢ and H, (1" )=1.

b) Let H: (r)=m,, /4—7r" 'A%, Hy (r)=r", Hy (r)= «“,, —r" A, )/ A, and Hy, (r) =
1—2bH,(r). Then H,(0)=H;(0)=0, H,(r)=H,(r)/Hs(r) and

H'. () /H () =A% Hy (r) a7

By [ 6, Theorem 1(c¢)], H, is strictly decreasing from (0,1) onto (0,a/c). so that H,, is strictly

../ arth 7% is strictly increasing (decreasing)

increasing from (0,1) onto (1—2ab/c,1).1t is easy to verify that 2ab/c< 1. Hence it follows from (17)
and [ 2, Theorem 1. 25] that H, is strictly increasing on (0,1). By I”Hopital’s rule and (17), H,(0" )=
o Clearly,H,(1 )=mr, /4.

¢) The limiting values of H, are clear. Set H (r)ZHH(r)/r,H]z(r):r" Ao/ Hu(r) and Hy; (1)
=2/p+0—=2/p[1+@—DH, ()], where H,(r)=4,,—&,,. Then Hyy (Hy;) is strictly increasing
(decreasing) from (0, 1) onto (0,c0) ((1, ¢/b), respectlvely) by [6., Theorem 1(d)], H,; (07) =
qlq(p—1)—2p+3]/ps and Hi; (1 )=qg—2(1—1/p). By (12)—(13), we have

H.()=—H,()H,;) (18)
H, (0" <0 <L2—1/(p—1) (19)
Hi;(0") =05¢=2—1/(p —1) (20)
H,;(1 ) >0 >=2(1—1/p) 2D
H,(1)<0=qg<20—1/p) (22)

If g=2, then H,;(r)>0 for r& (0,1) so that H; is strictly decreasing on (0,1) by (18).

If ¢€(1,2),then Hy; is strictly increasing on (0,1), and hence by (18)—(22), H'; (r)>0 (H'; (+)<C0)
for r€(0,1) if and only if H;; (17 )<C0 (H,; (07 )>=0), namely, ¢<<{2(1—1/p) (¢=2—1/(p—1),
respectively). Hence the result for H; follows.

d Let His (") =r""A,, and Hy; (7)= arth »**. Then Hy; (0)=H;(0) =0, H,(")=H ;s (r)/H s (),
and H s (+)/H s (r)=H, (r). Hence the assertion on the monotonicity properties of H, follows from
partc).Clearly,H, (0" )=mx,,/2 and H,(1 )=H,(1 )=2b.]

+q

3 Proof of Main Results

3.1 Proof of Theorem 1
a) Clearly, 17, ,(17)=0. Applying (14), we obtain the value A.».« (07 )=p. Let H,, be as in the proof
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of Lemma 2(b). Then by (16),
—m,, M )=, =2qGrT A D e A, s Hin(r) s
which is positive for € (0,1). Hence the monotonicity of .17, , follows.
Clearly, ¢—1=a/c if and only if ¢==d. Hence by [ 6, Theorem 2(a)], if ¢=d ,then the function
r Hr”fl/(,/:_q(r) is strictly increasing from (0,1) onto (0,mw,,/2). so that f, is a product of three positive
and strictly increasing functions. This yields the concavity of .17, .
b) Let f5(r)=m,,(r), fs(r)=log(1/r) and f; (r)=7r" ’(';.1,’[/’~‘1H10 (). Then f; is strictly
increasing on (0,1) by [6, theorem 2(a) ], f1()=fsr)/fs(r), f5(1)=fs(1)=0 and
s/ =fs ) =—rm’,,(r)=142qf:()/m,.,>
which is strictly increasing on (0,1) and hence sois 1 by [2, Theorem 1. 257. Applying 1’ Hépital’s rule,
we obtain the limiting values of f,.
o) Clearly, f, (1" )=m, ,(¢) and f,(0")=—log t. Let x=rt. Then 0<x<r, and
rf G =rltm’, (x)—m', , (] =fs(r)— fs(2).
Hence the result for f, follows from that of fs. The double inequalities (5) and (6) are clear.
d) Clearly, f;(17)=0. By part a),f;(0")=p(a—1). Put y=r=. Then by differentiation,
rf (P :a[rm/P_q(r) *ym/,,,,,(y)] =al fs(y)— Ffs(r)].
Hence by the monotonicity of fg.f s (r)>0C(f",(+)<C0) if and only if y >r (y<Ir. respectively). This
yields the monotonicity properties of f;. The remaining conclusions are clear. []
3.2 Proof of Theorem 2
a) Clearly, g, (17)=0. By (14)., one can obtain the limiting value g, (0" ) =p. Let H, be as in
Lemma 2. Then by differentiation and (15)
— g G =r" e H,(r) o Glont ) (23)
which is a product of three positive and strictly increasing on (0,1) by Lemma 2(b) and [ 6, Theorem 2
(a)]. Hence the monotonicity and concavity properties of g, follow.
Clearly, g,(0")=g,(07)=p. By I”Hopital’s rule, we obtain the value g, (1~ )=co, By(23),
g () [dG ) /dr ] =bH, (r) « /a7
which is a product of two positive and strictly increasing on (0,1) by [6, Theorem 2(a) ]. Hence the result
for g, follows from [ 2, Theorem 1. 25].
b) Applying I’ Hopital’s rule and (14), one can obtain the limiting values of g;.
It is easy to see that the function x > x/log(1/x) is strictly increasing on (0,1). Let f, be as in
Theorem 1,x=1/r, and g;(x)=ji,.,(x)/log(1l/x). Then g;(r)=g:;(x), and by (15),

o (r) = — / ( )dii X 7T/).f12
&t E 4 T log(l/x) T 4x A, (2)°

which is a product of three positive and strictly increasing functions of x € (0,1) by [ 6, Theorem 2(a) ]

[fia) =11,

and Theorem 1 b). Hence the result for g; follows.
¢) The limiting values of g, follow from part a). It is easy to verify that the function r —[log(1/+")7/r is

strictly increasing from (0,1) onto (0,o2). Let H, be as in Lemma 2. Then by differentiation and (15),

Apg +7pq/2 . log(1/r")

Tq o2
r /(/J.q r

g (r) = « H, (r),

which is a product of three positive and strictly increasing functions on (0,1) by Lemma 2 and [6, Theorem
2(a)]. Hence the result for g, follows.

d) Let gy (r)=log(1/#") and go(r)=1/ji,,(r). Then g: () =gs(r)/g.(r),gs(0)=g,(0)=0 and
g s(r)/g's(ry=r1 A'/i.q ,which is strictly increasing on(0,1) by [ 6, Theorem2(a) Jand hence so is g5 by

[2,Theoreml. 25].By 1’ Hoépital’s rule,we obtain the limiting values of gs.
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e) Clearly, g;(17)=p. By I’ Hopital’s rule, we obtain g; (0" )=n. Let H; be as in Lemma 2, g, (r)=p—
g1(r) and g1, (r)=r7 Then (=g () /g1 () sg1, (0" )=g,; (0)=0 and
gy H,(r)

7 =0 2
g n(r) r A

which is strictly increasing on (0,1) by [6, Theorem 2(a)] and Lemma 2(b). Hence the result for g
follows from [ 2, Theorem 1. 25]. The double inequality (8) is clear. []
3.3 Proof of Theorem 3

a) Clearly, h,(17)=,.,(t). By Theorem 2 (a), h,(0")=—logt.

Let x=rt and h, (r)=1/("24% ). Then 0<<x<r<{1, and by differentiation.,

4rh’ (r) =m,., Lhi(r) —h, ()],

which is positive by [ 6, Theorem 2(a)]. This yields the result for 2,. The double inequality (9) is clear.

It is clear that h, (17 )=oc0 and h, (0" )=1. Let h; (r)=1/(r/q/t-',).qfl-';_q ). Then by (15),

2rh’y (r) =m, hy (P [hs () —hs (2],

which is positive by [6, Theorem 2(a)]. Hence the result of i, follows.

b) It is clear that hg([):/j/),q(t)qhg(17):Zﬂ/)_(,(\/;) and h3(0+):,6’*logt. Put y:«/ﬁ. Then y>
r (y<r) if and only if r€ (0,2) (r & (z,1), respectively). By differentiation and (15),
4rh’s(r) =m,., Lhi(r) —h, ().
Hence by [6, Theorem 2(a) ], '3 (r)<<0Ch’,(r)>>0) if and only y>r (y<{r,respectively). This yields
the result for h;. The double inequality (10) and its equality case are clear. [ ]
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