BT I RFFRMARMFER.FH 39 5.5 6 H.2018 F 11 A
Journal of Zhejiang Sci-Tech University (Natural Sciences)
Vol. 39, No. 6, Nov. 2018

DOI:10. 3969/j. issn. 1673-3851(n). 2018. 06. 019

A double inequality for the ratio of complete
elliptic integrals of the first kind
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Abstract: In this paper, the authors present a double inequality for the ratio 4 (r)/4 (Jr) of complete elliptic
integrals of the first kind, in which the upper bound is much better than those known to us, while the proof of the
lower bound is much simpler than that recently given by Alzer and Richards.
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0 Introduction

Throughout this paper, we always let ¥’ = /1—7* for each r€[0,1]. As usual, the complete elliptic
integrals of the first and second kinds are defined as
/2 1

Jz:,%(r):J ———dt. 4 = A ) = AG 0 < r <1 (D
o /1 —r*sin’t
and
(e:(smzjm VI —rsin’ede ¢ = () = €GP0 < r <1 (2)
0

respectively, with #(0) =¢&(0) =x/2,4(1 ) =00 and ¢(1) =1. The basic properties of # and ¢ are
collected, for instance, in [ 117" and [ 2-4]. It is well known that these special functions have many
important applications in mathematics, physics and engineering. In particular, they play an important role
in quasiconformal theory.

During the past decades, many authors have obtained various properties for % and ¢, including
functional inequalities (cf. [5-14]). In [5, Theorem 3. 11], for example, the following double inequality
was obtained

1 - H(r) <min{y§,1//7}
VAR (O JIFr

while it was proved in [ 6, Theorem 1. 1] that the function r > JIFr A G /A is strictly increasing

from [0,1) onto [1 W2, Recently, Alzer and Richards proved in [7] that the double inequality
4 H(r)
A7

97"6[091] (3)
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holds for € (0,1). However, the second inequality in (4) is sharp only in the sense that lim,., 4 (r)/

AGJr)=1, and the proof of the first inequality in (4) given in [7] is quite complicated.
In this paper, motivated by (3) and (4), the authors intend to refine the upper bound in (4), and

simplify the proof of the first inequality in (4) given in [ 7] to a great extent. In addition, we shall show

some monotonicity properties of certain combinations in terms of #(r), #(J/r) and elementary functions.

Our main results are stated in the following theorem.
Theorem 1 a) The function f(rH)=A4+r) A () /K ([r) is strictly increasing from [0, 1) onto [4,5).

b) The function g(r)=U~+r)4(r) —44(Jr)is strictly increasing from [0, 1) onto [0,0).
¢) Forall r€[0,1),
4 H(r) 4 1 .
< < =
4+r\(%ﬁ(\/;)\4+r+ 5" (5)

with equality in each instance if and only if #=0. Moreover, the coefficient 1/5 in the second inequality in

(5) is the best possible.

1  Preliminaries

In this section, we prove two technical lemmas needed in the proofs of our main results stated in last

section. In the sequel, we always let N be the set of natural numbers, put

_(Lat/2)y" Tt /DT Cnt 1)
n [ T+ |7 T+ @2nt+1/2)"

for n€NU {0}, where I'(x) is the classical gamma function"'’®%*, and for n€ N, let
A, =20a, —5a,=0
A, =4(a,—5a, +5a,)=297/16
Agpr =as,—» T4as,— +20as,-1 —5a,
Ay =20a,:1 —az,—1 —4as, —20az,:

(6)

Clearly, ay=mn,a, =r/4 and a, =97/64.
Lemma 1 The sequence {b,} is strictly increasing in 7€ N with b, =4/3 and lim,....b, =+/2 , while the

sequence {a, | is strictly decreasing in 7€ N with lim,...a,=0. Furthermore, for nE€N,
16/9<<a,/a» <2 (7

Proof. Clearly, 6, =4/3. By [1]%", lim,...b,=+2. It is casy to verify that

b,,+1: (n+1/2)Cn+2)Cn+1 1+ 1 ~1
b, (+1D2n+3/2)C2n+1/2) 162°+16n+3~

yielding the monotonicity of {0, }.
Clearly, lim,...a,=0. Since a,:/a,=[(2n+1)/(2n+2)]*<1, the result for {a,} follows. It is easy

to show that a,/a,, =b%. Hence (7) follows from the result for {b,}. []
Lemma 2 For n€N,
0<Aygis<<Asi (8)
Proof. By (6), A,,.,>>0 if and only if

20“71+1
A2p—1 +4a2n + 20as,+»

P, Go= >1 9

It is easy to verify that for n€ N,

@i 1 2nt1 P ag _( 4An N ane  Unt3)Unt+1)4°
a, [2 4 [

4n—1 8(n+1)2n+D

atD | " a, (10)

b
A2y

By (7) and (10), we have
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P () — 5Cn+1D/i+1D 7 .
! [4n/Un—D P +4+5{Un+3) Un+ 1D/ [4+ D Cn+ D]} as,
16 52n+1D/(n+1)7T

27 ° 2 PR
9 [4n/Un—1D) P+4+5{4n+3)Un+ 1D /[4(n+1) 2n+1) ]}
which is greater than 1 since

16 [4n/Un—D P+4+5{Un+3)Un+D/[4(n+ 1) Cn+1)]}°
9 5LCn+1D/(n+1) ]

_ 97280n° +95232n° +6912n" —22528n°> —9840n° +72n+299
72004n—1)* 2n+1)"

102477 (957° —22) 4+48n* (1984n° —205)+6912n" +72n+299

720(4n—1)*2n+1)" —0.
Hence the first inequality in (8) follows from (9).
Next, by (6), we can easily see that A,, <A, if and only if
_ S5a, +20a,
PZ(”)*aZ” 2+5(12“ 1+4a27,+20a2”ﬂ +20a2,,A2<1 (11>
It is easy to show that
az,,fzz 87’1(27’1_1) z
as, [(471*3)(471*1)
(12)
Aoy+1 _ 47’l+1 2
as, [2(271+1)
For n€N, let P;(n) =5+5[(2n+1)/(n+1)]* and
- 8n(2n 4n c(4An+1 (4n+1)Un+3)4°
P“”)*[mn—smn—n] *5( ) R ( 1 j 5 [ G D @ F D
Then it follows from (10) —(12) and (7) that
P, (n) a, P, ()
2 < ’
Po0=5"C0 =2 P (o
and hence, P, (n)<1 for all n&€ N if
P;(w)=P,(n) —2P;(n)>0,nEN (13)

By computation, we have
16(4n—3)* (4n—1D)*Cn+D*n+1D*P;(n)
=221184n" —97280n° —93184n° +43648n" —33792n° +15536n" +7392n—1179
=1024n"(216n* —952—91) +1408n° (31n—24) +15536n" +(7392n—1179) >0
for n€N. Hence (13) really holds, so that A, ,<A,, ., by (11). []

2 Proof of Theorem 1

@) Let f1 () =C+r//TF7 and £, = VTFr 4G /A5G for r€[0.1). Then f(r) = f, () f2(r)
£ is strictly increasing from [0,1) onto [ 1, J2) by [ 6, Theorem 1.1], and it is easy to prove that f| is

strictly increasing from [0,1] onto [4,1 J. Hence the result for f follows.

J2
b) Clearly, g(r)=[f(r)—4]4fr). Hence the result for g follows from part a).
c) The first inequality and its equality case in (5) follows from part a) or part b). (Note that this
result has been proved in [ 7] by using a quite complicated method. )
For r€[0.1), let F(a.bs;c;r) be the Gaussian hypergeometric function' "™, and h (r) =10{[4 +

P4+ /51AWr) — A+r A . By [11°,

o 1 1 (1 2, ) 1
H(r) = %F(? ? j Z[ /2,n ] = Za,,r

n=0 n=0
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by which A(r) has the following power series expansion

h(r) = (P + 47 + 20) Za,,r” — 54 +r Ea,,rz”
n 0 n 0

— 20 E a,r"+ 4 E a, .r" + § a, 31" —5 E a,r® Tt —20 5 a,r®

n =0 n =2 n =3 n =0 n =0

= 20 Ea”r” + 4 Z A, 1" + Z A" — 5 Z a,r®tt—20 ia,,rz”

n=2 n=2 n =3 n =1 n=1

= Aur® 4 23204, + da, s +a, D" =5 a,r" T =20 D a,r”

n =3 n =1 n=2

- Az”2 + E(A2n+l *Aznfz”)7’2”+l (14)

n=1

Since A, 1 —rAs s >As 1 — Ay, >0 for r€[0,1) and nE€ N by Lemma 2, it follows from (14) and
Lemma 2 that

h(r) = Ay + D) (Agy — As) i =0 (15)

n=1

with equality in each instance if and only if »=0. This yields the second inequality in (5) and its equality
case.

It is well known that

() =log §+O( (1= )log(1—+ )) (16)
as r—>1M9 For r&€[0,1), let

hy (D) =7 2 (A /A — 4/ (A+1r)).
Then A, (17)=1/5, since lim /() /4 (/r)=1 by (16). This shows that the constant 1/5 in (5) is the best

possible. []
3 Concluding Remarks

a) The upper bound given in (5) is better than each of known upper bounds of % () /%4 (Jr) given in
(3)—(4). In order to show this, for r€[0,1), we let
1

4 2 i
Fl(r):m+€rzyF2(r):(mj and F; (r) =

1
(At a1

and give the comparisons between these known upper bounds of #(r) /% (Jr) below.
1) For all r€[0,1), it is clear that F,(+)>1 and

r(5+r)(1—r)
5(4+r)

which shows that F, (+)<{1<<F,(r), and hence the upper bound given in (5) is not only better than that

1—F, (r)= >0,

given in (4), but also better than the first upper bound given in (3).
ii) One can verify that F, () <<F,; (r) for all #€[0,1). As a matter of fact, we have
r L6254+ (A+r (A=) J[F (D' —F () = 1777 + 1117 + 4157 +14407° +4624+° +
9808r" +21664r° +46240,° +43680r* +102400+° +58225+* +10000r+92000>>0.
Hence the upper bound given in (5) is better than the second upper bound given in (3).
b) From (15) and Lemma 2, we see that for r&€[0,1),
H(r) - 4 1., A,rt

2 —
HGfry Atrs 104+ A G
which is better than the second inequality in (5). Unfortunately, the third term of the upper bound in (17)

an

contains A(Jr).
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¢) It can be proved that Theorem 1 can be extended to the generalized elliptic integrals %, ()= (x/2)
Fla,1—a;l;r*) fora€[0,1)and r&€[0,1),although the proof of this extension is more difficult than that
of Theorem 1. However, Theorem 1 can not be extended to the zero-balanced hypergeometric functions
Fla,bsa+bsx) for some values of a € (0,°°) and b€ (0,°°), These results will be given in a separate
paper.

d) Our computation supports the validity of the following conjecture: There exists a unique number r,

=0, 70679+, such that the function

F(r=r" (,ﬁ<r>/w<ﬁ>—4/<4+r>)
is strictly decreasing on (0,7, ] and increasing on [r,,1), with F(0")=7/64, F(17)=1/5 and c=F(r,) =
inf F(r)=0.0781. If this conjecture is true, then

0<<r<C1
4 (O N SR
74+r+cr \J(ﬁ)\4+r+ 5 r (18)

for r€[0,1), with equality in each instance if and only if »=0, and the coefficients ¢ and 1/5 in (18) are

both the best possible, thus improving the first inequality in (5).
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