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Abstract: This paper presents monotonicity and convexity properties of some combinations of

Gamma function, Beta function and Psi function, and attains asymptotically sharp upper and

lower bounds of these important special functions, thus improving and generalizing several known

results of these functions.
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1 Notation and mian results

For real and positive values of x and y, the

Gamma, Beta and Psi functions are defined as

oo

I'(x) :J e tdr,B(x,y) =

0

(o) I (y) _ ()
Dx+y’ I'(x)

respectively. For their extensions to complex

G2 (D

variables and for their basic properties, the reader
is referred to [ 1-3]. It is well known that these
important special functions have many applications
to various fields of mathematics and some other
disciplines as well as to engineering (cf. [ 1-11 ).
Many authors have obtained various properties of
these functions (cf. [2-117]).

In this paper, we present some monotonicity
and convexity properties of these functions, from
which some new asymptotically sharp estimates of
them follow. In addition, several known results
for these functions are improved and generalized.

In the sequels, we let y stand for the Euler’s
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constant as usual. Now we state our main results.
Our first result generalizes [ 4, Theorems 1.12(1)
— (2.

Theorem 1. 1 (1) For s >0, define the
function f, on (0, 00) by f, (z) =T (x+s)/
[T (x)]. Then f, is strictly increasing and log-
concave (decreasing and log-convex) from (0, c0)
onto (0,1) ((1, o)) if 0 <Ts<<1 (s5s>1,
respectively), and f, (x)=1 if s=1.

(2) The function f; (x) = f, (1/x) is
log-convex(log-concave) on (0, c0) if 1/2<Ts<C1
(s>1, respectively), while f; (x)=1/f, (x) is
convex on(0,c0)for each s&€ (0,1).

(3) The function f,(z)=zx[1— f1 (2)*] is
strictly increasing from (0,c0) onto (0,s5(1—s))
for each s€[1/2, 1). Moreover, for 1/2<s<1
and x=1,

Px,s)xat et

Plx )T (x+s) <D (x+s)<
Q(z, ) T()<Q(z,) " ! (2)

with equality in each instance if and only if =1,

Foundation item: This research is supported by the NSF of P. R. China (Grant No. 114329A4A11652)

Introduction of the first author: ZHAO Xue(1988—), female, postgraduate student, Jinzhong Shanxi; complex analysis.

Corresponding author: QIU Song-liang, E-mail:sl_qgiu@zstu. edu. cn



572 Wi om Tk %

R CH AR BE RO

2014 4 %5 31 &

1—[s(1—9) /2], D(s+1)}
1—{[1—TG+D*]/x}

where P(x,s) =max{

and Q (x, s) = min {

D(s+1)V},

Our next result generalizes [4, Theorem 1. 16
(1.

Theorem 1. 2 Let @« = ¢ 7% and B =
OOV = L0 Y012 Then we have the

following conclusions:

(1) The function f;(x)=[xB(x,s)]"" is
strictly decreasing and convex (increasing and
log-concave) from (0, o) onto (1,q) ((a, 1)) if
0<s<1(s>1, respectively).

(2) The function f;(x)=[log f5(x)+¢(s)+
y]/x is strictly increasing (decreasing) from (0,
o) onto (logB,0) ((0, log®) if 0<Ts<<1 (s>1,
respectively). In particular, for all x& (0,00)

za "T(OT ()<< (x+s)<pBxra “T(x)D(s)

(3)
if s€(0,1). If s&€ (1,00), the two inequalities in

(3) are both reversed.
2 Preliminary results

In this section, we establish the following
Theorem 2.1

(1) —(3) ] and is needed for the proofs of our main

theorem, which generalizes [ 4,
results.

Theorem 2,1 (1) For each s& (0,c0), define
the function F, on (0,o0) by

Fi(x)=¢(z+s) —¢(z) — (s/x).

Then F, is
(increasing and concave) from (0, c©) onto
(0,00)((—o2,0)) if 0<Ts<{1(s>1, respectively),
and F, () =0 if s=1.
F,(x)=F,(1/2) is convex (concave) on (0,c0) if
0<s<<1 (s>1, respectively).

(2) The function F; (x)=axF, (&) is strictly
decreasing (increasing) from (0,c°) onto (0,1—s)
((1—5,0)) if 0<<s<<1(s>1, respectively). In

particular, for x& (0,c0)

strictly decreasing and convex

Moreover, the function

s - 1
;<¢(I+.§) (/J(x)<I 4

if 0<<s<<1. If s& (1,22), the two inequalities in
(4) are both reversed.
(3) The function F,(x)=2* F,(x) is strictly

from (0, <o)

(0,s(1—s)/2)((s(1—35)/2,0)) if 1/2<s<1(s>1,

respectively). In particular, for x & (0,c0)

s(1—s)
2x°

if 1/2<s<<1. If s&(1,00), the two inequalities in

(5) are both reversed. F, is not always monotone

increasing ( decreasing ) onto

s s
;<¢(1+5) ¢(1)<z+ (5)

on (0,c0) at least for some values of s&€ (0,1/2).
Proof (1) By [1, 6.4.1]7,
2 F (2) = 1'2[¢'(1+s) _g[}/(l')] + 5=
_J 2ite " (1—e ™)

1—e¢"

dr (6)
Putting u=xt, we can rewrite (6) as

2Z2Fi(2) = F. (2) = S*J%uef“Fg(x,u)du

0

7
where Fs(x, u)=0—¢ **)/(1—e ). Clearly,

F.(0") = S*Jmue*“du =s—1 and F;(c0) =

0
s— SJ ue “du = 0.
0

It is easy to verify that the function Fy is strictly
decreasing (increasing) in x on (0,00) if 0<ls<1
(s > 1,
increasing (decreasing) in x from (0,o0) onto (s—1,
0) (0,(s—1)) if 0<<s<<1 (s>1, respectively), so
that the monotonicity of F; follows from (7).
Since [1,6.3.5]
g+ =¢(x)+ /2 (8)
Fi(x)=¢x+s)—¢a+D+[0—5)/x]
(M

respectively ).  Hence F; is strictly

so that
F . (0")= 1irri {p(x+s)—¢(z+ 1D+

[(1—s)/x]}=co(—0),
if 0<<s<{1 (s>1, respectively). On the other
hand, by [1, 6.3.18],

11 | 1
() ~logr— oo 0T 5o

4.

aom

as x—>o°o, and hence F, (c0) = }Lmlog (1+s/x)
=0.

Ho<s<1, then — F', (z) = (1/2%) -

[ —F;(x2) ], which is a product of two positive and

decreasing functions, and hence F, is convex on

(0,00). If s>1, then F/, (x)=(1/2*) « F, (2),
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which is a product of two positive and decreasing
functions, and hence the concavity of F; on (0,c0)
follows.

Next, since F', (x) =—F;(1/2), the conclusion
for F, follows from the monotonicity of F;.

(2) Set y=1/x. Then

y d
dy(y)

F,(x)= =F,(y,

and hence the monotonicity of F; follows from the
convexity and concavity of F, and the Monotone
I'Hopital’s Rule (cf. [3, Theorem 1.25]).

By (8), we can rewrite F;(x) as

F,(x) =1‘[</;(1'+s) *g[;(xJFl)]Jr(l*S) .
so that F;(07)=1—s. Since
x+s log[(lJr.skr)/(lJrI)]:sf

lim - log “ == =lim .

by I'Hopital’s Rule, it follows from (10) that

| ats 1 4+ 1
%8 1 2(x+s)  2(x+D

1,

+

F,(c0) = lim1~[

o(;)}ﬂ—so.

(3) Let y=1/x, F:(y)=4y*. Then F,(x)=
F,(y)/F:(y), F,(0")=F,(0)=0, F,(0") =
F'7 (0 =0,

F,(y)  F.(/y

oy 2y (1D
and by (7),
F/2<y) F/r(l/y> 1 5.
; = = —2'F;(x) =
(v 2y g v I (@)
*ijmue*"Fg(I,u)du (12)
2Jo
where
Fg(l',ll)zl) @—
dx
e T (1—e ") —se W (1—e ")
u A= )2 (13)
Set t=u/x. Then (13) can be rewritten as
L G =F (=
u
e '—e")—se "(A—e ') __
(1—e ")
e/_Se(fo)zJF(s_l)e(lfx)/
o —1) (14)
Differentiation gives
(¢ — 1) 'F'y(t)=h, (1)=s5e?""—¢' +
(1+25s—25)e '+ (1—5)e ¥ —1 (15)

VR (D =h, (D=5 (2—5)e' —e' —

s(I1—9)%e '+ (1—s)(1+25—25") (16)
s te h (D) =h,(H)=(1—s)?e *—
e 52— an
and
h (D =h (D=1—5h; (1) (18)

where h; (1) ="' —2(1—5). Clearly, h; (0) =
h, (0)=h; (0) =0 for all s&€ (0,00), h; (c0) =
s(2—s)>01f 0<<s<1l, hy(c0)=—o00 if s>1, and
hs is strictly increasing from (0,c0) onto (2s—1,00).

Now we study the monotonicity of F, by
discussing three cases.

Case(1) s>1.

In this case, it follows from (18) that h; is
strictly decreasing from (0,c0) onto (—<2,0), so
that by (17), h, is strictly decreasing on (0,c0),
Therefore by (16), h; is strictly decreasing on
(0,00). This, together with (13) — (15), implies
that Fy is strictly increasing in x on (0,20), Hence
by [ 3, Theorem 1. 257, the monotonicity of F,
follows from (11)—(12).

Case(ii) 1/2<<s<Z1.

In this case, h, (t) >0 by (18). Hence h; is
strictly increasing from (0,c0) onto (0,s(2—5)).
This shows that h, is positive and strictly increasing on
(0,c0), and so is h;. Thus by (14) — (15), Fy is
strictly decreasing in x on (0,co), so that F, is
strictly increasing on (0, c0) by (11) — (12) and
[3, Theorem 1.25].

Case(iil) 0<Ts<{1/2.

By (8), F,(x) can be rewritten as

F (o)=x[¢z+s)—¢ga+D ]+ A=,
and hence

F' (o) =2x[¢p(x+s)—¢(xt+1D ]+

2[¢ (s —¢ a+DI+A—s).
It is easy to obtain the limiting values

F'i(0")=0—s) > 0and F',(co)=0 (19)
By (8) and [1. 6.3.2, 6.4.2 & 23.2.247,

F' (D) =hs()=2[p(1+s)—(2) ]+

(¢ (1+s)—¢ (D ]+ A—5)=

291+ +¢ (1+s)—2(1—y) —

[ (D) —1]+1—s5=

2¢(1+5‘)+¢/(1+3)*s+27*(rr2/6)e
with h(0) =0 and
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R (s)=2¢ (1+s)+¢ (1+5—1.

By [1,6.4.2, 23.2.24 & Table 23. 3], we have

R (0)=2¢ (1) +¢ (1) —1=(x"/3)—2£(3) —

1 =—0.114 24...,

and hence there exists an s, € (0,1/2) such that
F' (1) =hg (s)<hs (0)<<0 for s€ (0,5,).
F,” changes its sign on (0,c0). This yields the
assertion for I, in the case 0<s<1/2.

Hence

3 Proof of the main results

In this section, we prove the main theorems
stated in Section 1.

3.1 Proof of Theorem 1. 1
fi(x)=1if s=1. Since

£1€0) =limz! - %:m)ml@

f](0+):O if 0<<s<<1, and f, (0")=co if s>1.
Since [1, 6.1.37]

(1) Clearly,

D(x)~2xe 2"~V as x—>co 20)
we obtain the limiting value f, (c0)=1.

Logarithmic differentiation gives

o/ filo)=glats)—¢a)—(s/2),
and hence the conclusions for f, follow from
Theorem 2. 1(1).

(2) Let F, be as in Theorem 2. 1(3). Then
[ (x)/ f2(x)=—F,(1/2) . and the conclusion for
f» follows from Theorem 2. 1(3).

Since fs (z) = — [ (x)/[fi (2] =
—F,(x)/f1(x), we obtain the result for f; from
part (1) and Theorem 2. 1(1).

(3) Let y=1/x, G, (y)=1—[f (1/y)]* and
G,(y)=y for each s&€[1/2,1), and let F, be as in
Theorem 2. 1(3). Then G, (07) =G, (0) =0 by
part (1), f,(x2)=G,(y)/G,(y) and

G (/G (y) =2y £ (1/y) f1(1/y) =

2L/ PF, (/).
Hence the monotonicity of f, follows from part
(1), Theorem 2.1(3) and [ 3, Theorem 1. 25].
By part (1), f,(0")=0. Applying I'Hoépital’s

Rule, we obtain

(o) —1; G/l(y):
fuleor=limer 23

2 lirp[f}(x)]zf'](I)Zs(lfs).

Next, it follows from the log-convexity of f,
on (0,1) that
logN(Gs+1)<log f» (x)<<x logDl(s+1),
for € (0,17, or equivalently,
FG+H+D<< i)+ DY,
for x €[ 1,20), with equality in each instance if
and only if x=1. This double inequality yields
2TGHDN O a+)<<z2TGHDY T
2D
for x € [1,00), with equality in each instance if
and only if x=1. On the other hand, it follows
from the monotonicity of f, on [1,o0) that
1—f1(D*<z[1— fL () ]<s(1—s),
for z&[1,20), and hence
1—[s(1—s)/x ]<T(x+sH<

2T V/1—{[1—TG+D*]/x) (22)
for x €[ 1,20), with equality in each instance if
and only if x=1. Combining (21) and (22), we
obtain the second and third inequalities in (2).
The first and fourth inequalities in (2) hold by [5,
Theorem 1.5]. The equality case is clear.

3.2 Proof of Theorem 1.2 (1) f;(x) can be

' T(x)

rewritten as
f:(o)=[T(x+DI(s)/T(x+s) ]V,
Logarithmic differentiation gives
(/) fs (o) =g(x)=g,(x) /g, (x) (23)
where g1 () =x[¢p(x+1) —¢(x+3s) ]+ logl(x+
s)—logl'(s) —logl'(x+1) and g, () = 2% with
2, (0)=g,(0)=0, and
g1’ ()
o ()
with gg(O):[g[/(l)*gl}/(‘s‘)]/Z:[(th/G)*g[}/(s)]/Z
by [1, 6. 4.2 & 23. 2. 247. Since ¢/ is strictly
decreasing on (0, c0), gy (x) <0 if 0<s<{1 and
g, (2)>>0 if s>>1. Since ¢ is strictly increasing on
(0,00), g3" (x) >0 if 0<<s<<1 and g (2)<C0 if
s>1, so that by [3, Theorem 1. 257, g is negative

— g (D=1[¢ G+D—¢ (x+] 20

and increasing (positive and decreasing) on (0,00)
if 0<<s<<{1 (s>1, respectively). Therefore for 0<s
<1, f5'(x)<<0 and — f5'(x) = fs () [ —g(x) ] is
a product of two positive and decreasing functions,
so that f5 is convex on (0,co). If s> 1, then
()= f:(z) g (2)>0 and f;' (2)/[f: ()=

g(x) is strictly decreasing for x € (0, c©), and
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=

hence the monotonicity and log-concavity of f5

follow. By I’'Hopital’s Rule,

limlog f; (r)—hm [logF(rﬁLl)*

x>0

logD(x+3s) +logl(s) ]=
lim[Sb(IJrl)—gb(l'Jr.s)]: —y—¢(s),

and hence f; (0" )=e 7 %Y =q. By [1, 6.1.40], we have

limlog f; (x) = limé[logF(IJrl)*
1ogF(1'+s)+logF(s)]=

T>c

11m 1 { <I+ >log(r+1)*

1

(17+52)108(1’+s)—1+s} =

}iﬂ(ﬁ ;logCat 1=
2‘2_1 >log(«r+s)} =

11mlog j_l 0,

so that f5(co) =1,

(2) Let g, (x) =log f5 (x) +¢(x) + 7 and
gs(x)=x. Then g, (07) =g5;(0) =0, fs(x)=
g.(x)/g:(x) and g,"(x)/g;' () =g(x), where g
is as in (23).
from the property of g above-mentioned.

Clearly, f;(co)=0. By I'Hopital’s Rule and
(24), fs(07) =g (0" )=gs(0") =log . The

remaining conclusions are clear.

Hence the monotonicity of f; follows
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