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Abstract: This paper studies the optimal index a of of M(r):%(r/)zx(r)x/(r)—Hog r in up-

per bound estimation in famous Hiibner inequation in quasiconformal theory, gains estimated val-

ues of upper and lower bounds when max {c: inequality M ()< ()¢ log 4 is established for all
r&(0,1)}, and proves min {¢: M(r)>(1—r) log 4 is established for all & (0,1)}=1. Thus,

very important upper bound of Hersch-Pfluger deviation function ¢k (7) in quasiconformal theory

and corresponding explicit quasiconformal Schwarz lemma are improved.
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0 Main Results

The complete elliptic integrals of the first and
second kinds are defined by[1-37,

/2
k=x(r) = J (1—%sin’x)V2dx,
0

K =k ) =k,
x(0) :%,Km = o

and

Je =elr) = J;?‘

=) =0,

(1—sin*x)?dx,

le(o) = %75(1) = 1.

for r€[0,17] and v = V/1—+", respectively. It is
well known that the complete elliptic integrals
have many important applications in physics, engi-
neering, geometric function theory, quasiconfor-
mal analysis, theory of mean values, number theo-

ry and many other fields. For these, and for the
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properties of k(r) and (), see[1-3, 5-6 ] and bib-
liographies there.

Throughout this paper, we let ¥’ =+/1—r* for
r&[0,1], arth be the inverse of the hyperbolic

tangent function, and let
77’1(7")2%(7"/)2ch/ and M(r) =m(r) +logr

(L
for r&[0,1] with m(0) =co,M(0) =lim,., = log4
and M(1)=0. The functions m(r) and M(r) play
a very important role in the study of the distortion
functions in quasiconformal theory. (See[ 3, 5-6,
8-13], for example.)

Let p(r) be the modulus of the Grotzsch ring
B2\[0,r] for 0<<r<C1, which has the well-known
expression?*

i (r)

#r) T2 k()
For r€[0,1] and KE (0,20), the Hersch-Pfluger
distortion function ¢k (1) is defined by[ 3-4]
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o () =p " () /KD + o (0) =g (1D —1=0 for ¢k () and for ¢k (1) :
(2 SDK(},)<4</>"”3<171/K> A/K and S01/K<4<17,-><17K> K

The functions p(r) and @k (r) are two of the most
important quasiconformal special functions, which
are indispensable to the quasiconformal theory.

In 1952, Hersch and Pfluger extended the
classical Schwarz lemma for analytic functions to
the class QCx (B*) ={ f| f is a K-quasiconformal
mapping of the unit disk B? into itself with f(0)=
0}, and established the following well-known qua-

siconformal Schwarz lemma'”

| (D) [<ex ([2]), for fEQCK(B?) and € B

3
In addition, other important distortion functions in
quasiconformal theory are all defined in terms of
¢k (r) s and many important distortion properties of
quasiconformal mappings are expressed in terms of
ok (r). (cf.[2-4]) Tt also has applications in some
other fields of mathematics (cf. [3, 6, 11]). For
example, ¢k () is the solution to the classical
Ramanujan modular equationst ¢ '/,

Many properties have been obtained for ¢k ()

by applying Hiibner’s sharp inequality®

ok (N<r"Fexp{(1—1/KOM() },
for K=1 and 0<<r<<1. (cf. [3-6,8-13]) In [9,
Corollary 1], it was proved that for all r& (0,1),
K& (1,00) and for real function g(») on (0,1),
the inequality

ok (N <r'"Fexp{(1—1/K)g(r)}

(o1 (N<rfexp{(1—K)g(r})

holds iff M(»)<g(r)

(M) =g (), respectively) 4
Therefore, in order to obtain the sharp upper
bounds for ¢k () and for ¢k () in terms of ele-
mentary functions, one needs only to the sharp
lower and upper bounds for the function M (7).
Several such kinds of inequalities have been ob-
tained. For example, [9, Theorem 1] presented

the following result

(1—r)arth«/;1

(1—r)logd<< N ogd<<M(@r)<<
r
(r')? %hrlog4<(r/ )3 logd &)

for all & (0,1), which yields the upper bounds

(6)
for r€(0,1) and K€ (1,00), while [13, Theorem
1. 2] gives the following bound for ¢k (r)

ok (1) <4(r’>3"2<171/1<> /K %)
for r€ (0,1) and K& (1,c0) by establishing the
inequality M (r) << (+')** log4. These results en-

courage people to obtain the following type ine-

qualities
gDK(r)<4(r’>"<171/1<> 7K and 901,/'K(7’)<
AT AT K for € (0,1) and K€ (1,00)

€))
with constant ¢>>0. By these researches on such
kind of inequalities as (8), the following question
is natural and significant.
Question 1.1  What is the value of
a=max{c: The first inequality in (8) holds
for all ¥&€[0,1] and KE (1,00)}7
By [9, Theorem 6 &. Corollary 1], Question
1. 1 is equivalent to the following
Question 1.2 What is the value of
a=max{c: M)
(') logd for all r€[0,17}7 €))
Similarly, another natural question is the fol-
lowing.
Question 1.3 What is the value of
f=min{c: M) =
(1—r)< logd for all r€[0,17]}2 (10)
The main purpose of this paper is to study
Questions 1. 2 and 1. 3. We shall obtain the lower
and upper bounds for the constant ¢ given in (9),
and prove that f=1 in (10). We now state our
main result.
Theorem 1.4 (1) Let o and 8 be as in (9) and
(10), respectively. Then
1. 6<<a¢<C1. 625 and g=1.
In particular,
(1—r)Flogd<<M(r)<<(+")¥log a2
for all »&€ (0,1), with the most possible constant
=1. However for a=1. 625 (0<{g<C1), the second

(first, respectively) in (12) can be reversed for

1D

some values of r& (0,1).
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(2) For all »&€(0,1) and K&E(1,00),
ok (1) <4(r’>8”5<171/1<) UK (13)
and the exponent 1 of (1—7) in second inequality
in (6) is the most possible.

(3) For each f€QCk(B?) and =€ B?,
1£(2) |<4(17\z2>""‘(171,/'1<> | 2| VK (14)

1 Preliminary Results

In this section, we establish a technical lem-
ma, which is needed in the proof of our main result
stated in Section 0. First, we record the following

well-known derivative formulas:

de e de e«

d&r rGHE Cdr (15)
C%(IC_€):(:/€)29C%[€_(T‘/)2K]:7‘K (16)
d 4,4
@M(i’)—m}c (e—x) m’( o ke > a7

for 0<<r<C1. (cf. [2] or [6, Theoren 4. 1]) .
Next, we prove the following lemma.
Lemma 2.1 (1) There exists a unique num-

ber ; € (0. 723, 0. 724) such that the function f;

(r)=x/\r is strictly decreasing on (0,7 |, and in-
creasing on [ r,1).

(2) The function f, (=" k" is strictly
decreasing on (0,1//2].

(3) The function f;(H=G")"" (x—e) /7 is
strictly decreasing on [0. 987,1).

(4) The function f, (r)=k"/()? is strictly
increasing on [ 0. 987,1), where §=0. 019.

Proof (1) Differentiation gives

272G (= f;(N=2[e— )k ]— (") ’k,
which is strictly increasing from (0,1) onto (—=/
2,2) by [6, Lemmas 5. 2(1) & 5.4(1)7]. Since f;
(0.723)=—0. 004 74...<<0 and f5(0. 724)=0.000
06...>0, f5 has a unique zero r; € (0. 723, 0. 724)
such that f5(r)<<0 for r& (0,r;) and f5(r)>0 for
r& (r;,1). Hence the piecewise monotonicity of f)
follows.

(2) By differentiation, we have

5r() £ (=5 f5 () — f5 ) ]—2r ' <

5[f6 (r) _f6 (7’/>]<O

for € (0,1//27, since the function f;(r)=r’k" +

[e— ()% ]/r* is strictly increasing from (0,1) on-

to (0,7/2) by [6, Lemmas 5. 2(1) & 5.4(1)].

This yields the monotonicity of f> on (0,1//2].
(3) Let ¢=1.581 and

_@2—re—20")%
fr () r(k—e)

forre (0,1).
Then

K—e
by [14, (2. 53)]. Since f7 is strictly decreasing
from (0,1) onto (0,3/4) by [14, Theorem 14,
and since f7 (0. 987)=0. 4198..., the monotonicity
of f30on[0.987,1) follows from (18).

(4) Differentiation gives

() (D= fi D=+ D —¢ (19
By [6, Lemmas 5. 2(1) & 5.4(1) ], f5(r) =8
— (¢’ —7%') is strictly increasing on (0,1). Since
f5(0.987)=0. 008 91...>>0, the monotonicity of f,
on [0. 987, 1) follows from (19).

Lemma 2.2 Let g, (r) =)Dk (k—e) /7
for r& (0,1). Then g, is strictly decreasing on
[0.99, 1), and

g1 (N<<(2xlogd) /5 for r&[0.987, 1) (20)

Proof Differentiation gives

/\8/5
%g/] (l’):gz (=

fa(r=f;(r)—0.419 (18)

5—(10—8r2+5 %)"2_6 21)
K 'K
By [6, Lemma 5. 2(3) ], it holds that
2 (N<G (a.b)=
_ o2 e (@) k(@) —e(a)
5 [10 86 +5 K,(a)} et @

for each [a, 6] C (0,1). By computation, we
have:

G (0. 99, 0. 991) =—0. 001 4..., G, (0. 991,
0.993)=—0.029 1... s (0.993, 1)=—0.02009....
Hence it follows from (21) and (22) that g, is
strictly decreasing on [0. 99, 1), so that

g1 (N<<g (0.99D)=1.7121...<

2FrclogZL:L 742 06..., for r&€[0.991, 1) (23)

Clearly, g; (r)E%mlogéL—gl (r) :%Tlogék—fg

() f.(r), where f; and f, are as in Lemma 2. 1.

Hence, by Lemma 2. 1,

g,g(r)>G2(a,b)E%rlogél—fg(a)ﬁ(b) (24)
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for each [a, 6]C(0,1). Since G, (0. 987, 0. 991)
=0. 026 0...,

g3 (>0, for r€[0.987, 0.991]. (25)
The inequality (20) now follows from (23) and
(25).

2 Proof of the main results

In this section, we prove our main result,
which is Theorem 1. 4 stated in Section 0.

(1) First, we prove the following inequality

M) <<(r')"% logd for r€ (0,1) (26)
which yields the lower bound of « in (11). For
this, we let g; be as in Lemma 2. 2, and let
h(r) =M — G logd

for r&€(0,1). Then

fr(r’)z”sh/(r):hl(r)E%{logél—gl(r) 27

by (17). Now we divide the proof of (26) into
three steps.

Step 1 We prove that A is strictly decreasing
on (0, 0.53].

For this purpose, we let f, be as in Lemma
2.1(2) and h, (r) = (k —¢)/(+*k). Then h, is
strictly increasing from (0,1) onto (1/2,1) by [6,
Lemma 5. 2(3)]. Hence it follows from (27) and
Lemma 2. 1(2) that

h1<r><Hl<a,b)z%“1og4—hz(a>f2(b> (28)

for each [a,6]C(0,1//2]. Computation gives:
H,(0,0.48)=—0.001 2..., H,(0.48,0.52)=
—0.0029..., H,(0.52,0.53)=—0.001 4....
Hence by (27) and (28), h is strictly decreasing
on [0, 0.53) as desired.
Step 2 We prove that A is strictly increasing
on [0.54, 1).
It follows from (27) that

f(r/)‘”h’(r):ha(r)z
-

%(/)7,@0_@@) (29)

where h, (r) =) (k—e) /r*. By [14, Theorem
15], hy is strictly decreasing from (0,1) onto (0,
00), Therefore, it follows from (29) that

h3<r)>H2(a,b>5¢§g4<b’)m—m<a> (30)

for each [a, 6]C(0,1). By computation, we ob-
tain;

H, (0. 54, 0. 545) =0. 002 6..., H, (0. 545,
0.552)=0. 006 0..., H,(0.552,0.57)=0. 006 &...,

H,(0.57,0.62)=0.0037..., H,(0.62,0.705)
=0. 008 6..., H,(0.705,0.81)=0.003 4...,

H, (0. 81, 0. 882) =0. 008 9..., H, (0. 882,
0.92)=0.013 1..., H»(0.92,0.94)=0. 015 3...
and H, (0. 94,0. 955) =0. 001 8.... Hence by (29)
and (30), we have:

h' (1) >0 for r&[0.54,0.955]
By [14, (2.53)], one can rewrite (21) as

3D

’N2
G2 Dy y=h, (D —hy (D2 (32)
T‘g1(r) >
where
ho () = ELEEI K oy (1) =
r*(k—e) rk

By [14, Theorem 14, hg is decreasing from (0, 1)
onto (0, 3/4), while h; () =(r V2e") « (F/2/) !
is strictly decreasing from (0,1) onto (1,00) by
[6, Lemma 5. 4]. Hence, it follows from (32)
that

hs<r>>H3<a,b>zh6<b>—h7<a>+% (33)

for each [a, 6]C(0,1). Computation gives:
H, (0. 955, 0.975)=0. 019 9..., H;(0. 975, 0.982)
=0. 016 6..., H; (0. 982, 0. 987) = 0. 000 5....
Thus, by (27), (32) and (33), h; is strictly de-
creasing on [ 0. 955, 0. 987], so that
hy (r)=h, (0. 987) =
[2n(log4) /5]— g1 (0. 987)=0. 0285...,
for r&€[0. 955, 0.987] (34)
It follows from (20), (27), (31) and (34)
that A is strictly increasing on [0. 54, 1). This,
together with the monotonicity of h obtained in
step 1, yields
h(r)<<h(0")=h(1 )=0,
for r€ (0, 0.53]U[0.54, 1) (35)
Step 3 We prove that 2(+)<<0 for r&€[0. 53,
0.54].
For r&€1[0.53, 0.54], we have
h(H)<MC0. 53)—(1—0. 54*)"° logd=—0. 046 4...,
sinc M(r) is decreasing on (0,1) by [ 6, Theorem
5.5(3)]. This, together with (35), yields (26) as

desired.
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Next, we prove the second inequality in (11).

Clearly,
M) log4<:>a<()jqle(r) ,
where
_ log[ (ogd) /M) |
F(I") log(l/r/) .

Since F (0. 98) =1. 624 5..., we obtain the upper
bound of ¢ in (11).

Now let hg (r) =M () — (1—r)f logd for r&
(0,1), where 0<{f<{1. Then

f(1—r>‘*ﬁh/g<r>:hg<r>z

s (11— 1B /K€
2,810g2 (1—r"% , (36)

If p=1, then he () =[(xlog2)/2]—rk’ + (x—
e)/r? is strictly decreasing from (0,1) onto (—co,
(x log2)/2) by [6, Lemmas 5. 2(3) & 5.4(1)]
and has a unique zero r, on (0,1). Thus hg(r) is
strictly increasing on (0, r; |, and decreasing on
[r1, 1). Hence hs (r) =0 for all »€ (0,1). This
yields the estimate: p<1.

If 0<<p<<1, then hy(1 ) =(xp log2)/2>>0, so
that there exists a number r, € (0,1) such that hs
is strictly increasing on [y, 1) and hg (r)<hs (1)
=0 for r€[r,1). Hence g£1. Thus p=1.

The remaining conclusion in part (1) is clear.

(2) Part (2) follows from part (1) and (4).

(3) Part (3) follows from part (3) and (13).

Corollary 3. 1 (1) There exists a unique
number r, € (0. 53, 0. 54) such that the function

h(rH=M)— (") logi
is strictly decreasing on (0, r, ], and strictly in-
creasing on [y, 1), with h(07)=h(1")=0.

(2) There exists a unique number r; € (0. 59,
0.591) such that the function

hs (HN=M(@)—(1—r)logd
is strictly increasing on (0, r, |, and strictly de-
creasing on [ 1, 1), with hs (07 )=hs(17)=0.

Proof
proof of Theorem 1. 4, It follows from (32) that

hs (r)<H,(a,0)=hs(a) —h; (b)+0.6 (37)
for each [a, 6]C[0. 53, 0.54]. Since H, (0. 53,
0.54)=—0. 686 0..., it follows from (27), (32)
and (37) that A, is strictly increasing on [ 0. 53,

(1) We use the same notation as in the

0.54]. Since h; (0. 53) =—0. 004 4... and since h;
(0. 54) = 0. 005 1..., h; has a unique zero r, on
[0.53, 0.54] such that A, (r)<<0 for »r& [0. 53,
7o) and hy (r) >0 for r€ (r,, 0. 54]. Hence by
(27), h is strictly decreasing on [ 0. 53, r, |, and
strictly increasing on [ r,, 0. 54]. This, together
with the monotonicity of 2 on (0, 0. 53] and on
[0. 54, 1) proved above, yields the piecewise
monotonicity of h on (0, 1).

(2) Let hy be as in (36) with B=1. Then by the
proof of Theorem 1. 4, hy is strictly decreasing from
(0,1) onto (—oco, (1t log2)/2) and has a unique zero
r on (0,1). Since Ay (0. 59) =0, 000 06... and ho
(0.591)=—0.00168..., r€(0.59, 0.591) and the

conclusion follows.
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