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Abstract: In this paper, several lower and upper bounds of the complete elliptic integral of

the first kind K () are obtained in terms of trigonometric functions sine and cosines, as well as

those of Hiibner’s upper bound function. New estimates for the Hersch-Puger distortion function

¢k (r) are presented according to the experimental results.
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0 Introduction

Throughout this paper, we let ¥ =/1—¢* for
r€[0,1]. The complete elliptic integrals of the
first and second kinds are defined by [ 1-2]

K=KG) = F (1—rsin?®) 7 do,
0

K'=K'(n =K, D
K(0) = 7/2,K(1) = oo

and
e=e() = [T A= rsino! .
=) =0, (2)
d@::%wﬂ)zl,

respectively.

It is well known that the complete elliptic in-
tegrals have many important applications in phys-

ics, engineering, geometric function theory, quasi-
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conformal analysis, theory of mean values, number
theory and many other related fields. For these,
and for properties of () and e(#), see [ 3-10].

Let B? be the unit disk in the plane, and x(r)
be the modulus of the Grotzsch ring B2\[ 0,7 ] for r
€(0,1). Then [4]

K (D)
2K

For K &€ (0,c2), the Hersch-Pfluger distor-
tion function gx on [0,1] is defined by [4 ]

u(r) = (3)

ok (r) = u ! (%) for r € (0,1,

ek (0) = (1) —1 = 0. €Y
It is well known that the Hersch-Pfluger dis-
tortion function ¢k (r) plays an extremrly impor-
tant role in quasiconformal theory as well as in
some other mathematical fields. (Cf. [4].) This
quasiconformal special function has been the sub-

ject of intensive researches, and many properties
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including estimates have been obtained. (See, for
example,[4,11-15]).

Letm(r) — (%)r/ZIC(r)IC/(r) for 0< r<1.

O. Hiibner obtained the following important ine-

quality-'
ok (r) <rkexp{< %)Em(r)+10g(r)]
(5
for all &€ (0,1) and K& (1,00),
In [ 12 ], the following conclusions were
proved: For all & (0,1) and K& (1,00),
gox(r)<rll\'exp{(1—ll<)a(r)} (6)
holds if and only if a(+) = m(») +log r, and
go,i((r)<rKexp{(1—K)b(r)} D)

holds if and only if 6(+)<{m () +log r, where both
a(r) and b(r) and real functions on (0,1).

The main purpose of this paper is to present
several lower and upper bounds of the complete el-
liptic integral of the first kind XC () in terms of
trigonometric functions sine and cosines. We shall
also obtain the bounds for the Hiibner upper bound
function m (r) +log r, and apply these results to
provide new extimates for the Hersch-Pfluger dis-

tortion function ¢k (7).
1 Lemmas

In order to prove our main results, we need
some formulas and lemmas, which are presented in
this section,

First we state the following derivative formu-
las [4,pp. 474-475]

dKC s*rZIC de _e—K

dr 't T dr ro
de —r*K) _ K dC—e) _ =

dr Tdr 2’

dlr(zjir) :%<1—%K;€/>:7[4’C (TE[ /C)_l:|
for 0<r<{1, and the following two lemmas, (see
[4, Theorems 1. 25,3.21(7) &. 3.30(2), Exercise
3.43(11) ] and [ 14, Lemma]).

—oco<lq<lb<loo, let f, g:la,

b]—>R be continuous on [a,b], and be differentia-

Lemma 1. For

ble on (a,b), with g’ ()70 on (a,b). If % is

increasing (decreasing) on (a.b), then so are

[(x) — f(a) an f(x) — f)
g(x) —gla) 7 glx) — gb)”
If ?E;; is strictly monotone, then the monotonici-

ty in the conclusion is also strict.

Lemma 2.

(1) /7 IC is strictly decreasing from (0, 1)

onto (O,%);

2) Lrl) is trictly increasing from (0, 1)
log<7>
onto (1,00);
(3) @ is strictly increasing from (0, 1)

onto (%,O@);

rlog( 1 )
(4) " J1 s strictly increasing from (0,

72
-

1) onto (o%)

Next, we prove a technical lemma needed lat-

er.

Lemma 3,

4
()
(1) The function f(r) = 1 is
[r log <7 ) ]
strictly = decreasing from (0, 1 ) onto
1
0 m 1= ( log4 ) .
’ 2

(2) The function g(r) = @ is strictly in-

n 1— -
log4 o |-

2

creasing from (0, 1) onto

In particular, for all & (0,1),

%(171024>/2 <

o IC w1 ’
€ 1 < 2 (1 10g4>r. (8)
ox(7)
(3) The function h(r) = K=o is

4
()]
strictly increasing from (0,1) onto (0,1).
Proof, (1) By [4,(3.25) ],
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i e () ]
lgrll[&; 1. <r/log£/>— </C—log£/)]: 0.

Letfl(i)—slog< ) K, ﬁ(r)—rlog( )

f2(r) =K —e and f4(r)— g Then (1) = £,(17)
— £ = £,(0) = 0, () 7;1?; nd
i G G e 9)
L LT 22—

Clearly, the function r— is positive and

_r
Q2—r")
strictly decreasing on (0,1), and hence so is f by
Lemma 1 and (9).

1~ (1ogi)
It is clear that f(0) = =« £ . By

2
I"Hopital’s Rule and (9), (1 )=0.

(2) Let f(r) = r’zlog<§). Then f;(1) =
f1(7')

1) =0, glr) = [AC )@ and
4N
po e BRI
Js @ r ZIOg(i/)—l
4
log 7 —1

It is easy to show that the function r —
2log i/ —1
(¥)
is strictly increasing on (0,1) so that the function on the
right side of (10) is strictly increasing on (0,1) by [6,
Lemma 5. 2(3)7]. Hence the monotonicity of g follows

from Lemma 1.

1~ (Togt)
Clearly, g(0) = =« 982/ 1 By I'Hopital’s

2
Rule, g(17)=0c0,
(3) It is clear that A (1) =1. By I'Hopital’s
Rule, 2(0)=0. Diffrerntiation gives

1 A, A
o) 1]
and hence the monotoicity of & follows from part

(D.

h(r) =

2 Main Results

[m(r) + logr]

Theorem 1. The function F(r) = K]

is strictly decreasing and concave from (0, 1) onto

<O,(1LTC16)). In particular, for r& (0,1),
log%u—r)r’lar) <
m(r) + logr < l()g%r’ KO, (12)

Proff. By differentiation,
()
K= r, 1 1 “ +1
Fn = rrr? log ror K2 {10%( }, ) '
(13
which is strictly decreasing from (0, 1) onto
(—o0,0) by Lemma 2. Therefore, F is strictly de-

creasing and concave on (0,1).

(logl6)
B

Clearly, F (07 ) = By I'Hopital’s

Rule, F(17)=0.

vious.

the double inequality (12) is ob-

(1) The functions G, (r) =
[cos(F'KO) ]
rZ

Theorem 2.
LinG I nd 6, () = are both
strictly increasing on (0,1), with ranges (1,c0)
and (% ,1) , respectively.

) — LsinG'KOT

()]

strictly increasing from (0,1) onto <@,1>. In

(2) The function H (r

particular, for r&(0,1),

ax{ arcco§(r2) ’ arcsin[/P(r)] }<
r r
mr’
arccos(“g-
K<< 7 ) 14
r'log i/
where P(r)= I .
ogd
Proof. (1) Let G; () =sin(+'IC) and G, (r)=
Y. Then G,(n =2 G .(17)=G,(1)=0. and
G, ()
G,(r) _ K—¢ ’
TR cos(+ IO, (15

which is strictly increasing on (0,1) by Lemma 2.
This yields the monotonicity of G; by Lemma 1.
Clearly, G, (0)=1. By I'Hopital’s Rule, we get G,
(1" )=o0
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Next, let Gs () =cos(+' k) and G; (r) =2,

Then G2<r>:Gf(r), G- (0)=G;(0)=0, and
Gﬁ(?’)
G:(» _K—e,
G = o G (r), (16)

which is a product of two positive and strictly in-
creasing functions by [ 6, Lemma 5. 2(3) ] and by
the monotonicity of G,. The monotonicity of G,
now follows from Lemma 1.

The limiting value G; (1~ ) =1 is clear. By
I’'Hopital’s Rule and [ 6, Lemma 5.2(3) ], G,(0")

_ T
3
() Let G» (r) =7 1og(7%“,). Then H () =
Gg(r) ~ N N
G7(7')’ (73(1 )*(77(1 )*O, and
oD G —Koe o an
T log<7)—1’

whick is strictly increasing on (0, 1) by Part (1)
and Lemma 3(3). Hence the monotonicity of H

follows from Lemmal.

1
log4*

(17), Lemma 3(3) and by Part (1), H(1 )=1,
the double inequality(14) holds by the monotonici-
ty of H and Part(1).

Remark. It is clear that in Theorem 2, Part

Clearly, H(0) = By I'Hépital’s Rule,

(2) improves the property of G; in Part(1). On the
other hand, by Theorem 2, we have

K = M K =
{arcsin[ P(r) ]}
r

[arcsin(+')]

>

for all & (0,1). It is easy to verify that for all »r&
0,1,
aresin(r')<Zarccos(r?).

Moreover, by elementary method, one can show
that there exists a unique number r, & (0,1) such
that for »& (ry, 1),

<Zarccos(r*), for r&€ (0, 7)),
arcsin| P(r) JJ =arccos(#?), for r=ry, (18)

>arccos(r?), for r& (r5,1).

From inequalities (5), (7), (12) and (14),

one can obtain the following corollary.

Corollary, For all € (0,1), K& (1,00), a=

2
“an), A(r):arccos(ﬂ> and B(r)=(1—r)

8
arcsin[(@log(ﬁ)}
ok (r) << riKexp{a[l — < )]r/ IC}<
%exp{a[l-( )]A(r)}
and

@l (r) < rFexpla(1—K)(1—nr K} <
rexpla(1—K)B(r)}.
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