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Abstract: In this paper, the authors show the monotonicity and convexity properties of
certain combinations defined in terms of the Ramanujan constant R(a)=—2y—¢(a) —¢(1—a)
and beta function B(a) =B (a,1—a) = n/sin(wa), and obtain asymptotically sharp lower and
upper bounds for R(a) —B(a). Thus, they deeply reveal the relationship between R (a) and
B(a,1—a) and improve some known results for R(a).
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0 Introduction and Main Results

For x,y > 0, the gamma, beta and psi functions are defined as

N _ 'y _ I (&)
I'(x) Lt e 'dt,B(x,y) Tzt s () )

respectively. For their basic properties, the reader is referred to [1-4]. Here we only record following
formulas applied frequently in the sequel, (cf. [1, 6.3.5, 6.3.7, 6.3.16, 6.4.10, 6.3.22 & 6.1.17],

respectively) :

(D

$(1— ) — $(2) = meot(ma) » (2)
¢<x>+%:¢<1+x> :—y+§m, (3)
¢ (@) = (1)”177!2 G +1x>"“’ 4

o) +v = J 1:’1: dro % — J %dt. (5)

The so-called Ramanujan constant R(a) is defined by

R(a) =—2v—¢la) — (1 —a). (6)
fora € (0,1), wherey =0.5772156649---is the Euler constant. By the symmetry, we can assume that a &€
(0,1/2] in (6). It is well known that R(a) is essential not only in the study of the generalized elliptic
integrals and the theory of Ramanujan’s modular equations, but also in some other fields of mathematics
such as quasiconformal theory. (See [1 — 3 & 5 — 11].) Some authors have obtained various analytic

properties and functional inequalities for this function. (Cf. [3, 5 & 8-13].) On the other hand, the
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functions R(a) and

B(a) =B(a.1—a) = (@)1 —a) = =n/sin(wa) B
often simultaneously appear in the related studies, and we have to reveal the relations between R(a) and
Bla).

The main purpose of this paper is to show the monotonicity and convexity properties of certain
combinations defined in terms of R(a),B(a) and some elementary functions, and to obtain asymptotically
sharp lower and upper bounds for R(a) — B(a). By these results, several comparisons between R(a) and
B(a) are presented, and some known related results are improved.

Throughout this paper, we let

a = log% = 0.8825++,8 = 2w — 8log2 = 0.7380++,0 = %2 = 1.6449...,9=06— = 0.9069-,

and let {(s) = Z:;l/ef" denote the Riemann zeta function as usual, with Re s > 1. We now state the main

results of this paper below.

Theorem 1  a) The function f(x) = R(x)/B(x) is strictly decreasing from (0,1/2] onto[a,1).
However, f is neither convex nor concave on (0,1/27].

b) For ¢ € (0,90), let g(x) = R(x) —c¢B(x). Then g is strictly decreasing on (0,1/2] if and only if
¢<<1, and g is convex on (0,1/2] if and only if ¢ << 1, with g((0,1/2]) = [logl6 —c¢w,o)if ¢ <1, and
g(0,1/2]) =[—p/2,0)if ¢ = 1. Moreover, for ¢ € (0,1] and n € N, g* is strictly decreasing and convex
on (0,1/2], while g** Vis strictly increasing and concave on (0,1/2]. However, if 1 < ¢ <C 28¢(3)/x*,
then g is not monotone on (0,1/2].

¢) If ¢ = a, then the function h(x) = g(x) /(1 —2x)* is strictly decreasing and convex from (0,1/2)
onto ([7¢(3) — n*log2]/2,°°). In particular, for x € (0,1/2],

R(a) >aB<x>+%[7§<3>—n21ogz]<1—21>2, (8)

with equality if and only if x = 1/2.
Theorem 2 a) The function F(x) =[B(x) —R(x) ]/x is strictly decreasing and convex from (0,1/2]
onto [8,8). In particular, for x € (0,1/2],
B(x) —fr — (1l —2x) < R(@) <Blx) —fr (9
with equality in each instance if and only if x = 1/2. Furthermore, the derivative F’ is strictly increasing
and concave from (0,1/2] onto (—2¢(3), — 28].

b) The function G(x) = l{B(l‘) —R(x)+ (1—a)[B(x) — (1/x)]}is strictly decreasing and convex
X

from (0,1/2] onto [A,,A,), where A, = 2[3(1*%): 1.0061++ and A, = 6(2 —a) = 1.8381:-.In

particular, for x € (0,1/2],

(2 — )B(2) —IZQ—A@— (A, —AD2(1 —22) <R < 2 —B(x) — 2% A+ (1))

with equality in each instance if and only if x = 1/2.
1 Proof of Theorem 1

In this section, we prove Theorem 1 stated in Section 0.

a) Set y = x(1 —x). It follows from (3) and (6) that

_ 1, gy = LNV kt2y
R(x) L, Pl +1) — P2 — 2) 5 ;k(k2+k+y). (1D

By(2) — (4), (6) — (7) and (11), and by differentiation, we obtain
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B [ (2) _ 1
1—2x 1—2x

(A —2) — ¢ (@) +R@LPA — 2) — ()]}

1

1—21,22[(n+1*1)27(n+1) ]+

1 1 N n+2y 1 —2x i( l—z )
1—21‘[31 ,,zln(nZ—O—n—f—y)H ~ an\ntl—x n+tzx ]
IR S B vt 2y

”Z;) (n2+n+y) [1 ,Z;n(n 71—|—y)](1+2nz+n+y)

N 2n+1
a ,Z:; n* +n+ y)* *

iy oy N M_( V' j y(nt2y)
yz[; n’ +n+ty Zn(n2+n+y) ;"2+77+y Zn("2+"+3’>

n=1 n=1

2nt+1 N 1 (N 1 n+2y
2 Gty 22 n(n* +n+y) (Z:; n2+71+yj; n(n2+77+y)<o'

n=1

This yields the monotonicity of f.
Clearly, f(1/2) = (logl6)/=x. By (11), f(0") = {ng[xR(x)][sin(nx)]/(nI) = 1.
Next, differentiation gives
xf(z) = [R'(x) — 7*R(x) + 2xR’ (2) cot(nz) Isin(xz). (12)
By (3) and (6), we have

R(x) =—2vy—¢(1—x) — ¢l +2) + (1/2), (13)
R(x)=¢A—2)—¢A+2)—A/2D), (14)
R'(x) =— ¢ A —2) —¢"A+2)+ 2/25). 15

By (12),
() = 2[R'(2) — n*R(x) + 2xR’ (x) cot(mx) ] » % (16)

and hence it follows from (13) — (15) that
" = “Bo“{_ JA—2)— ¢ A+ + @2/ + 72y + ¢l — ) + (1 +2) — (1/) ]+
2n[¢ (1 —2) — " A+ 2) — (1/2%) Jeot(mx) }

— 9 lim 1— Tt.ZTCZ()t(TE.Z') 2 — 9 lim sin(na) — thcos(frx) = L ~o.
0 x 20 T 3
On the other hand, it follows from (12) that f"(1/2) = 4[7¢(3) — n’log2]/x = 2.0032+-- > 0. Hence f’

is not monotone on (0,1/2], so that f is neither convex nor concave on (0,1/2].

b) For eachz € (0,1) and for x € (0,1/2], let g, (&) ="'+ . Itis easy to show that g, is strictly

decreasing and convex from (0,1/27] onto[ 2/4t s (141) /1), gt (g{* " )is strictly decreasing ( increasing)
and convex (concave, respectively) on (0,1/2] for n € N.

By (5), R(x) and B(x) can be rewritten as

1
R(x) :J {{g1(x)—2]/C0 —0)}de, an
N ! J a1 ()
B(x) —J 1+zdt+J1 1+de ) 1+tdz (18)

respectively, and hence

g(l‘):J [lchr(lecl)t]g,;](r)*Z(lJrl‘) . (19)
. _

If c <1, then by (19), g is strictly decreasing on (0,1/2]. If ¢ > 1, then

xr * ccos(mr) — {[sin(xa) ]/ (n2) }* —} oo
sin(mx) z’ '

g (0" = 11m
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so that g is not decreasing on (0,1/2], since

(@) = ¢ d—2)— ¢ (x+ D —%

, cos(mx)
22
sin® (ntx)

20

-
by (3). Thus, g is strictly decreasing on (0,1/2] if and only if ¢ << 1
If c <1, then g(1/2) = logl6 — cw, and

g0 = lim{=[Y+¢(1 =] =7+ + 0] +1-

cm
sin(n.r)}
— lim sin(ntx) — cmx — i T [sin(nx) ]/ (xx) — ¢
w0  xsin(wax) -0 sin(mx) x

If c =1, then g(1/2) = logl6 —n =— /2, and g(0") = 0 by (19).
If ¢ << 1, then by (19), g’ is strictly increasing on (0,1/2] so that g is convex on (0,1/2]. On the
other hand, by(20),

o 1+ cos’ (nx)
sin’ ()

g () =*¢”(1*x)*¢”(1?+1)+%f 21
x

so that for ¢ > 1,
& (0°) =— 2¢/(1) + lim 2sin® (rx) — c(xx)?*[1 + cos® (xx) ]

w0 [xsin(nx) ]?

:4§(3)+h 2{[sin(na)]/(xx)} S*cﬂl—kcoq (ra) ] _ -

X

and hence g is not convex on (0,1/27] if ¢ > 1. Consequently, g is convex (0,1/2] if and only if ¢ << 1
The assertion for g™ follows from the following expression

g (2) = J [1—c+ (lljtc)l‘]g(”)(x)

If 1 <<c¢<C28%(3)/x*, then by (20) and (21),
g (0") =4 0c0,g"(1/2) = 0.,47(0") =—00,5"(1/2) = 28¢£(3) —cn® > 0.
This shows that there exist z; and x, such that g’ (x) >0 for 0 << x <<z, and g’ (x) << 0 for x, << x < 1/2.
Hence for 1 < ¢ < 28¢(3)/n*, g is not monotone on (0,1/2].
¢) Differentiation and (19) give

1—220)g" () +4g(x) _ hi (o)

(1—22)° hy ()
where h, (2) = (1—22)g" () +4g(x) and h, (x) = (1—2x)°, Clearly, h,"(2) = 2g" (x) + (1 —22)g"(x),
' (x) = 0—2x)¢"(x),g(1/2) = 0 for ¢ = a, and g’ (1/2) = 0 since

o () — J [(1—c+A+oelg’ (1)

W () = (22)

1—1¢
Hence h,(1/2) = h,(1/2) = h,"(1/2) = h,'(1/2) = 0. Since
h () /" (2) = g7 () /24 (23)

which is strictly increasing in x on (0,1/27] by Theorem 1(b). Therefore, A’ is strictly increasing in x on

(0,1/2] by (22) — (23) and the Monotone I'H 6pital’s Rule [3, Theorem 1.25], so that & is convex
(0,1/2]. Since

lj 1—C+(1+C)I 1///(I)d1:09

Ilirlr/lzh (2> = 24 1—1¢

the monotonicity of A follows. Clearly, h(07) = g(07) =+ co, By I'H Z)pital’s Rule,
h(i): l[ lim ¢ Ad—x) —J¢ @ 4 2(logl6) lim cos(nx)]

2 4 La>1/2 20— 1 —1/2 2 1
= [—2¢"(1/2) — n’logl6]/8 = [7£(3) — =*log2]/2.

The inequality (8) and its equality case are clear.
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2 Proof of Theorem 2

a) Clearly,F(x) :*g(ix)with ¢ =1, and hence the monotonicity of F follows from [3, Theorem 1.
x

251 and the convexity of g. Now let F, (2) = g(x) —2g’(x) and F,(x) = 2*. Then F,(07) = F,(0) =0,
F'(x) = F,(x)/F,(x), and by (19),

1
F () /F, (x) =—¢"(x)/2 :7J [t(logt) g, (x) /(1 —¢*) ]dt 24
0

which is strictly increasing on (0,1/27]. This shows that F’ is strictly increasing on (0,1/27] by [3,
Theorem 1. 25], and hence the convexity of F follows.

Clearly, F(1/2) = . By (20) and I'H apital’s Rule, we obtain

F(0") = lim sin® (nx) — (wx)?cos(mx) _ 1 lim sin® (n2) — () ?cos(mx)
20 [ xsin(nx) ]? v G— x!
_ 1 . sin(a) —nx _n 1. cos(mx)—1 __ o
DR cos(mz) =+ im =5 T 6
The double inequality (9) and its equality case are clear.
2t 1 . r
F(x) = = 1+ e—eG@t ) 1de (25)
xJol—1t
, 2 (" 1 _ _
F'(x) = 7J 1 tz[(z‘* 1) — (" — 1" logt — (1 + 1) ]dt (26)
X 0 -
1
F(x) = ZJ [Fs(2)/(1—¢*)]de 27

where Fi(x) = F, () /Fs (2),F, () =21+ +2x (" — " Dlogt —2(t" +¢"*) — 2" (¢* + ") (logt)* and
F.(x) = 2*. Clearly, F,(0) = F;(0) = 0. Differentiation gives
F,(2)/F (x) = [ — ") Uogt)?*log(1/0)]/3,
which is strictly decreasing in = on (0,1/2]. By[3, Theorem 1.25], this shows that F, is strictly
decreasing in x on (0,1/2], and hence the concavity of F’ follows from (27).
Clearly, F'(1/2) = F,(1/2)/F,(1/2) =— 2B. Since sin’(nz) = «'[2' — (x*/2)2" + O(z") Jand
cos’ (nx) = 1 — (na)? +O0(zx*)as . — 0, it follows from (24) and (21) that

PN P R 1 2sin’ () — ()’ [1 4 cos’ () ] T 3
F'(0") =—g"(0")/2 = ¢"(D ; lim = [sin(nx)

= ¢’ (1) =—2¢(3).

b) Clearly, G(x) can be rewritten as

G(x) = F(o) + (1 — o 2B =1 (28)
X
It is well known that for | ¢ | << =,
L _ i N __9l-2n —2n y 2n—1
STV +2§<1 21y e (20 (29)
(See [1, 4.3.68 & 23.1.18].) Hence
B =1 a3V - 2@ = 230 (1 — 27§+ 2) 2 (30)
x n=1 n=>0

by (7), and it follows from (28) and (30) that
2B (2) — 2B(x) +2

X

= F () +40—a) D n(1—271)¢@n+ 22 . (3D

n=1

By part(1), F’ is strictly increasing on (0,1/2]. Therefore, (31) shows that G’ is strictly increasing on

G()=F+U—a

(0,1/27, and hence the convexity of G follows.
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By part (1) and the first equality in (31), we obtain the value G'(1/2) =—48[1—(2/7)] < 0. Hence
G’ (x) < 0 for all z € (0,1/2]by the monotonicity of G’. This yields the monotonicity of G.

Clearly,G(1/2) = A,. By part(1), (28) and (30),G(07) = A,. The double inequality(10) and its
equality case are clear.

Remark It is easy to verify that the lower (upper) bound given in (9) is greater than the lower
(upper, respectively) bound given in (10). The lower (upper) bound given in (9) ((10), respectively)
improves those of R(x) contained in [ 11, Theorem 2.3]. Theorem 1(a) improves [ 12, Theorem 2(1) ]
and [13, Theorem 2(4)] where there was no conclusion on the convexity and/or concavity for the function

f(x) = R(2)/B(x) = [R(x)sin(xzx)]/n, and (8) improves [12, (7).
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B E. 4:3E7 ¢ Ramanujan F# R(a) = —27—¢(a) —$(1—a) F= Beta F1 4 Bla,1—a) =x/sin(na) & L85 — 220 469 £
HE@LE, KA T R(@—Bla,1—a) ¥ — 2B EAFH E TR MAMEABFTT ZHH R@E Bla,1—) R XF,F&#T
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