|本期目录/Table of Contents|

[1]谢明辉,董余兵.PDA@CNTs/EVA纤维应变传感器的制备及其性能[J].浙江理工大学学报,2022,47-48(自科四):512-523.
 XIE Minghui,DONG Yubing.Preparation and performance of PDA@CNTs/EVA  fiber strain sensor[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科四):512-523.
点击复制

PDA@CNTs/EVA纤维应变传感器的制备及其性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第47-48卷
期数:
2022年自科第四期
页码:
512-523
栏目:
出版日期:
2022-09-30

文章信息/Info

Title:
Preparation and performance of PDA@CNTs/EVA  fiber strain sensor
文章编号:
1673-3851 (2022) 07-0512-12
作者:
谢明辉董余兵
浙江理工大学材料科学与工程学院,杭州 310018
Author(s):
XIE Minghui DONG Yubing
School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
应变传感器CNTs乙烯-醋酸乙烯酯盐酸多巴胺大应变范围
分类号:
TB332
文献标志码:
A
摘要:
为了获得具有高灵敏度、宽传感范围和卓越耐用性等优异特性的柔性应变传感器,以乙烯-醋酸乙烯酯(Ethylene vinyl acetate copolymer, EVA)、碳纳米管(Carbon nanotubes, CNTs)和盐酸多巴胺(3 Hydroxytyramine hydrochloride, PDA)为主要原料,通过双螺杆挤出拉伸制备EVA纤维,采用溶胀-超声法和原位聚合法先后制得CNTs/EVA纤维和PDA@CNTs/EVA纤维。采用SEM、万能试验机、TGA、电化学工作站和静电计等仪器设备,表征分析了该纤维的微观结构、力学性能、热稳定性和传感性能,并探究了该纤维在人体运动监测方面的应用性能。结果表明:CNTs均匀附着在EVA表面,PDA呈颗粒状黏附在CNTs上面;PDA@CNTs增强了EVA纤维的力学性能,改善了EVA纤维的热稳定性;PDA@CNTs/EVA纤维传感器具有较大应变传感范围(330%)、高灵敏度(17.1)、超快响应速度(257.8 ms);同时,PDA@CNTs/EVA纤维传感器具有优异的静态稳定性和动态耐用性(>3000次循环);对人体运动(包括肘关节的运动、手指的弯曲和嘴巴鼓气/呼气)的监测表明,PDA@CNTs/EVA纤维传感器在人工智能领域的人机界面具有广阔的应用前景。

参考文献/References:

1 Pang C, Lee C, Suh K Y. Recent advances in flexible sensors for wearable and implantable devices J . Journal of Applied Polymer Science, 2013, 130(3): 1429 - 1441.

2Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable humanactivity monitoringand personal healthcareJ. Advanced Materials, 2016, 28(22): 4338-4372.

3Wu X D, Han Y Y, Zhang X X, et al. Highly sensitive, stretchable, and washdurable strain sensor based on ultrathin conductive Layer@Polyurethane yarn for tiny motion monitoringJ. ACS Applied Materials & Interfaces, 2016, 8(15): 9936-9945.

4Lu L J, Jiang C P, Hu G S, et al. Flexible noncontact sensing for humanmachine interactionJ. Advanced Materials, 2021, 33(16): 2100218.

5Gao F M, Wang L H, Lin T. Intelligent wearable rehabilitation robot control system based on mobile communication networkJ. Computer Communications, 2020, 153: 286-293.

6Cheng B C, Wu P Y. Recycled iontronic from discarded chewed gum for personalized healthcare monitoring and intelligent information encryptionJ. ACS Applied Materials & Interfaces, 2021, 13(5): 6731-6738.

7Han L, Cui S B, Yu H Y, et al. Selfhealable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systemsJ. ACS Applied Materials & Interfaces, 2019, 11(47): 44642-44651.

8Wang C Y, Li X, Gao E L, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensorsJ. Advanced Materials, 2016, 28(31): 6640-6648.

9Park J J, Hyun W J, Mun S C, et al. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoringJ. ACS Applied Materials & Interfaces, 2015, 7(11): 6317-6324.

10Zhao Y, Gao W C, Dai K, et al. Bioinspired multifunctional photonicelectronic smart skin for ultrasensitive health monitoring, for visual and selfpowered sensingJ. Advanced Materials, 2021, 33(45): 2102332.

undefined

备注/Memo

备注/Memo:
收稿日期:2021-12-28
网络出版日期:2022-03-18
基金项目: “纺织之光”应用基础研究项目(J202102)
作者简介:谢明辉(1996-),男,江西赣州人,硕士研究生,主要从事柔性应变传感器方面的研究
通信作者:董余兵,E-mail:dyb19831120@zstu.edu.cn
更新日期/Last Update: 2022-09-06