|本期目录/Table of Contents|

[1]王翔,任佳.基于多注意力机制的深度神经网络故障诊断算法[J].浙江理工大学学报,2020,43-44(自科二):224-231.
 WANG Xiang,REN Jia.Deep neural network fault diagnosis algorithm based on multiattention mechanism[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科二):224-231.
点击复制

基于多注意力机制的深度神经网络故障诊断算法()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第43-44卷
期数:
2020年自科二期
页码:
224-231
栏目:
出版日期:
2020-05-18

文章信息/Info

Title:
Deep neural network fault diagnosis algorithm based on multiattention mechanism
文章编号:
1673-3851 (2020) 03-0224-08
作者:
王翔任佳
浙江理工大学机械与自动控制学院,杭州 310018
Author(s):
WANG XiangREN Jia
Faculty of Mechanical Engineering & Automation, Zhejiang  Sci-Tech University, Hangzhou 310018, China
关键词:
故障诊断注意力机制自注意力深度神经网络田纳西伊斯曼过程
分类号:
TH7
文献标志码:
A
摘要:
针对现有的故障诊断算法难以深入挖掘复杂过程数据内在信息的问题,引入深度神经网络增强故障诊断模型的非线性表征能力,并在此基础上引入三种注意力机制对特征之间的非线性关系进行建模,提出了一种基于多注意力机制的深度神经网络故障诊断算法。该算法首先引入特征位置嵌入方法生成特征位置向量,并将其同特征向量一并作为深层网络的输入;然后通过注意力机制计算相应的注意力特征,完成故障类型诊断;最后将该算法应用到田纳西伊斯曼过程(TennesseeEastman process, TEP)故障诊断中进行性能验证,并与常规的数据驱动方法进行对比。实验结果表明,该算法的平均F1分数比常规的数据驱动方法高10%~15%。

参考文献/References:

[1] 齐咏生, 张海利, 高学金, 等. 基于KECA的化工过程故障监测新方法[J]. 化工学报, 2016, 67(3): 1063-1069.
[2] Cai B P, Huang L, Xie M. Bayesian networks in fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(5): 2227-2240.
[3] Zhu Z B, Song Z H. Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis[J]. Chemical Engineering Research & Design, 2010, 88(8): 936-951.
[4] Rato T, Reis M, Schmitt E, et al. A systematic comparison of PCAbased Statistical Process Monitoring methods for highdimensional, timedependent Processes[J]. AIChE Journal, 2016, 62(5): 1478-1493.
[5] Yin G, Zhang Y T, Li Z N, et al. Online fault diagnosis method based on incremental support vector data description and extreme learning machine with incremental output structure[J]. Neurocomputing, 2014, 128: 224-231.[6] Eslamloueyan R. Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the TennesseeEastman process[J]. Applied Soft Computing, 2011, 11(1): 1407-1415.
[7] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[8] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1): 1-19.
[9] Mnih V, Heess N, Graves A, et al. Recurrent models of visual attention[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems: Volume 2, Montreal. Cambridge: MIT Press, 2014: 2204-2212.
[10] 邓远远, 沈炜. 基于注意力反馈机制的深度图像标注模型[J]. 浙江理工大学学报, 2019, 41(2): 208-216.

相似文献/References:

[1]邓远远,沈炜.基于注意力反馈机制的深度图像标注模型[J].浙江理工大学学报,2019,41-42(自科二):208.
 DENG Yuanyuan,SHEN Wei.Depth image caption model based on  attention feedback mechanism[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科二):208.
[2]邓远远,沈炜.基于注意力反馈机制的深度图像标注模型[J].浙江理工大学学报,2019,41-42(自科二):208.
 DENG Yuanyuan,SHEN Wei.Depth image caption model based on attention feedback mechanism[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科二):208.
[3]陈巧红,王磊,孙麒,等.基于混合神经网络的中文短文本分类模型[J].浙江理工大学学报,2019,41-42(自科四):509.
 CHEN Qiaohong,WANG Lei,SUN Qi,et al.Chinese short text classification model based on hybrid neural network[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科二):509.

备注/Memo

备注/Memo:
收稿日期:2019-08-28
网络出版日期: 2019-12-02
基金项目:浙江省自然科学基金项目(LY17F030024);浙江省公益技术研究项目(LGG20F030007)
作者简介:王翔(1995-),男,浙江温州人,硕士研究生,主要从事深度学习方面的研究
通信作者:任佳,E-mail:jren@zstu.edu.cn
更新日期/Last Update: 2020-04-10