|本期目录/Table of Contents|

[1]张光,崔宝玲,金英子,等.微型激波管内部激波特性的数值模拟[J].浙江理工大学学报,2015,33-34(自科6):805-811.
 ZHANG Guang,CUI Bao ling,JIN Ying zi,et al.Numerical Simulation of Shock Wave Characteristics in Micro Shock Tubes[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科6):805-811.
点击复制

微型激波管内部激波特性的数值模拟()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第33-34卷
期数:
2015年自科6期
页码:
805-811
栏目:
出版日期:
2015-11-10

文章信息/Info

Title:
Numerical Simulation of Shock Wave Characteristics in Micro Shock Tubes
文章编号:
1673-3851 (2015) 06-0805-07
作者:
张光崔宝玲金英子金羲東
1.浙江理工大学浙江省流体传输技术研究重点实验室,杭州 310018;2.安东国立大学机械工程学院,韩国安东 760749
Author(s):
ZHANG Guang CUI Baoling JIN Yingzi KIM Heuydong
1. The Zhejiang Provincial Key Laboratory of Fluid Transmission Technology Research, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2.Department of Mechanical Engineering, Andong National University, Andong 760749, Republic of Korea
关键词:
微型激波管激波交接面非定常流动数值模拟
分类号:
TH47
文献标志码:
A
摘要:
为了研究微型激波管内部的不稳定流动和激波运动特性,采用数值模拟的方法对微型激波管内部流动进行分析。对比分析不同隔膜压力比(高压腔与低压腔的初始压力之比)和激波管直径对微型激波管内激波、交接面以及流体运动特性的影响,并与实验数据进行比较。结果表明:随着隔膜压力比的增大,激波和交接面的运动速度逐渐增大;激波在微型激波管内运动时,其强度逐渐减弱;在低压被驱动腔内压强较低时,观察到厚度较大的边界层,这说明低压影响对微型激波管内的激波和流体运动会产生一定的能量损失;激波前后的压力梯度随着激波运动逐渐减小;交接面在微型激波管内运动时,运动速度逐渐增大;参数S值可以反映微型激波管内的低压和小尺寸影响。

参考文献/References:

[1] Duff R E. Shock tube performance at initial low pressure [J]. Phys Fluids,1959,2(1):207-216.
[2] Ngomo D, Chaudhuri A, Chinnayya A, et al. Numerical study of shock propagation and attenuation in narrow tubes including friction and heat losses [J]. Computers & Fluids,2010,39(9):1711-1721.
[3] Xiao H, Toshiyuki A, Naoya T. The feature of weak shock wave propagated in an overlong tunnel [J]. Open Journal of Fluid Dynamics,2012,2(4):285-289.
[4] Mirshekari G, Brouillette M. Onedimensional model for microscale shock tube flow [J]. Shock Waves, 2009, 19 (1): 25-38.
[5] Watvisave D S, Bhandarkar U V, Puranik B P. Effects of wall conduction and rarefaction on shock propagation in a microchannel [J]. Shock Waves,2014,24(3):295-306.
[6] Huynh D. The shock tube problem from a combined experimental and computational perspective [C]∥21th AIAA Computational Fluid Dynamics Conference. San Diego, California, USA,2013,3:2442-2458.
[7] Sturtevant B, Okamura T T. Dependence of shock tube boundary layers on shock strength [J]. Phys Fluids,1969,12(8):1723-1725.
[8] Tanaki K, Inaba K, Yamamoto M. Numerical investigation on transition of shock induced boundary layer [C]∥47th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, 2009:5-8.
[9] Mirels H. Test time in low pressure shock tubes [J]. Phys Fluids,1963,6(9):1201-1214.
[10] Roshko A. On flow duration in low pressure shock tubes [J]. Phys Fluids,1960,3(6):835-842.
[11] Brouillete M. Shock waves at microscales [J]. Shock Waves,2003,13(1):3-12.
[12] Park J O, Kim G W, Kim H D. Experimental study of the shock wave dynamics in micro shock tube [J]. Journal of the Korean Society of Propulsion Engineers,2014,17(5):54-59.
[13] Sun M, Ogawa T, Takayama K. Shock propagation in narrow channels [C]∥ Processing of 24th International Symposium on Shock Waves. Tohoku University, Katahira, Japan,2001:1321-1327.
[14] Zeitoun D E. Microsize and initial pressure effects on shock wave propagation in a tube [J]. Shock Waves,2014,24(5):515-520.
[15] Zeitoun D E, Burtschell Y. NavierStokes computations in micro shock tubes [J]. Shock Waves,2006,15(3):241-246.

相似文献/References:

[1]张苹,亓洪训,章利特,等. 激波驱动颗粒群加速效果优化的实验研究[J].浙江理工大学学报,2013,30(01):71.
 ZHANG Ping,QI Hong xun,ZHANG Li te,et al. Experimental Investigation on Optimizing the Effect of Particles Acceleration Driven by Shock Waves[J].Journal of Zhejiang Sci-Tech University,2013,30(自科6):71.
[2]肖毅,施红辉,吴宇,等.激波与液滴作用的空气动力学现象的实验研究[J].浙江理工大学学报,2013,30(02):71.
 XIAO Yi,SHI Hong hui,WU Yu,et al. Experimental Study on Aerodynamic Phenomenon ofInteraction between Shock Wave and Liquid Drop[J].Journal of Zhejiang Sci-Tech University,2013,30(自科6):71.
[3]亓洪训,张苹,章利特,等. 激波加载固定单双球模型有效阻力测量[J].浙江理工大学学报,2013,30(02):76.
 QI Hong xun,ZHANG Ping,ZHANG Li te,et al. Measurement of Effective Resistance of Fixed Single and DoubleSphere Model with Shock Wave Load[J].Journal of Zhejiang Sci-Tech University,2013,30(自科6):76.
[4]陈婉君,章利特,施红辉,等.激波加载单双圆柱非稳态曳力的数值研究[J].浙江理工大学学报,2015,33-34(自科1):55.
 CHEN Wan jun,ZHANG Li te,SHI Hong hui,et al.Numerical study of Unsteady Drag Force in Shock Wave s Interaction with Single/Double Cylindrical Models[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科6):55.
[5]叶斌,王超,施红辉,等.平面激波与气泡界面相互作用过程的数值研究[J].浙江理工大学学报,2015,33-34(自科5):682.
 YE Bin,WANG Chao,SHI Hong hui,et al.Numerical Study of Interaction Process of Planar Shock Waveand Bubble Interface[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科6):682.
[6]郝李娜,章利特,王天航,等.激波诱导模型球阵非稳态阻力的数值模拟研究[J].浙江理工大学学报,2016,35-36(自科5):726.
 HAO Lina,ZHANG Lite,WANG Tianhang,et al.Numerical Simulation Study on Unsteady Drag Force Acting on Model Sphere Array Induced by Shock Wave[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科6):726.
[7]熊红平,刘金宏,施红辉,等.高速氩气流中水滴和电子氟化液滴变形破碎的实验研究[J].浙江理工大学学报,2017,37-38(自科3):409.
 XIONG Hongping,LIU Jinhong,SHI Honghui,et al.Experiments on Deformation and Breakup of Water and ElectronicFluoride Droplets in HighSpeed Argon Stream[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科6):409.

备注/Memo

备注/Memo:
收稿日期: 2015-01-13
基金项目: 国家自然科学基金项目(51406184)
作者简介: 张光(1988-),男,湖北孝昌人,硕士研究生,主要从事微型激波管方面的研究
通信作者: 崔宝玲,E-mail:blcui@zstu.edu.cn
更新日期/Last Update: 2015-11-18