|本期目录/Table of Contents|

[1]楼永坚,罗光彦,赵阳,等.具有三重交联结构导电水凝胶的制备及其性能[J].浙江理工大学学报,2018,39-40(自科6):709-714.
 LOU Yongjian,LUO Guangyan,ZHAO Yang,et al.Preparation and properties of conductive hydrogel with triplecrosslinking structure[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科6):709-714.
点击复制

具有三重交联结构导电水凝胶的制备及其性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第39-40卷
期数:
2018年自科6期
页码:
709-714
栏目:
出版日期:
2018-11-10

文章信息/Info

Title:
Preparation and properties of conductive hydrogel with triplecrosslinking structure
文章编号:
1673-3851 (2018) 11-0709-06
作者:
楼永坚罗光彦赵阳付飞亚刘向东
浙江理工大学材料与纺织学院,杭州 310018
Author(s):
LOU Yongjian LUO Guangyan ZHAO Yang FU Feiya LIU Xiangdong
College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
三重交联导电水凝胶机械性能
分类号:
TB381
文献标志码:
A
摘要:
导电高分子水凝胶作为一种新型导电材料,由于其良好的导电性和水凝胶独有的溶胀特点,在生物传感器,电器元件等领域展现了巨大的应用价值。以丙烯酰胺(AAm)作为主体材料,N,N亚甲基双丙烯酰胺(BisAAm)作为化学交联剂,同时引入甲基丙烯酸月桂酯(LMA)和十二烷基溴化铵(DTBA)组成的胶束交联及丙烯酸钠(SAA)和甲基丙烯酰氯乙基三甲基溴化铵(DMC)形成的阴阳离子静电力交联,再添加适量的石墨粉,通过自由基聚合制备机械性能和导电性能优良的三重交联结构复合导电水凝胶。研究结果表明:水凝胶中BisAAm含量为0.180 mol/L,DTBA的含量为0.148 mol/L时,能获得最佳机械性能并兼导电性能,其压缩模量为0.340 MPa,拉伸模量为0.090 MPa,电导率为1.32 S/m;该水凝胶具有一定自愈性和pH敏感性,是一款综合性能优良的智能导电复合水凝胶,具有广阔的应用前景。

参考文献/References:

[1] 翟茂林,哈鸿飞.水凝胶的合成、性质及应用[J].大学化学,2001,16(5):22-27.
[2] 邵亮,柳明珠,邱建辉,等.导电水凝胶的制备[J].化学进展,2011,23(5):923-929.
[3] 毕曼,郝红,李涛.智能水凝胶研究最新进展[J].离子交换与吸附,2008,24(2):188-192.
[4] Gong J P. Why are double network hydrogels so tough?[J]. Soft Matter,2010,6(12):2583-2590.
[5] Santin M, Huang S J, Iannace S, et al. Synthesis and characterization of a new interpenetrated poly(2hydroxyethylmethacrylate)gelatin composite polymer[J]. Biomaterials,1996,17(15):1459-1467.
[6] Vaz C M, Reis R L, Cunha A M. Use of coupling agents to enhance the interfacial interactions in starchEVOH/hydroxylapatite composites[J]. Biomaterials,2002,23(2):629-635.
[7] Haraguchi K, Li H J, Matsuda K, et al. Mechanism of forming organic/inorganic network structures during Insitu freeradical polymerization in PNIPAClay nanocomposite hydrogels[J]. Macromolecules,2005,38(8):3482-3490.
[8] Guo H, Kurokawa T, Takahata M, et al. Quantitative observation of electric potential distribution of brittle polyelectrolyte hydrogels using microelectrode technique[J]. Macromolecules,2016,49(8):3100-3108.
[9] ZygadfoMonikowska E,Florjańczyk Z,WielgusBarry E, et al. Proton conducting gel polyelectrolytes based on 2acrylamido2methyl1propanesulfonic acid (AMPSA) copolymers with polyfunctional monomers. Part I. Anhydrous systems[J]. Journal of Power Sources,2006,159(1):385-391.
[10] Small C J, Too C O, Wallace G G. Responsive conducting polymerhydrogel composites[J]. Polymer Gels & Networks,1997,5(3):251-265.

备注/Memo

备注/Memo:
收稿日期: 2018-01-04
网络出版日期: 2018-05-12
作者简介: 楼永坚(1994-),男,浙江金华人,硕士研究生,主要从事苯并噁嗪树脂方面的研究
通信作者: 刘向东,E-mail:liuxd@zstu.edu.cn
更新日期/Last Update: 2018-11-09