|本期目录/Table of Contents|

[1]王越,张丽俊.广义可压缩杠杆方程的精确行波解[J].浙江理工大学学报,2018,39-40(自科5):624-629.
 WANG Yue,ZHANG Lijun.The accurate traveling wave solution to a generalizedcompressible lever equation[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科5):624-629.
点击复制

广义可压缩杠杆方程的精确行波解()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第39-40卷
期数:
2018年自科5期
页码:
624-629
栏目:
出版日期:
2018-08-31

文章信息/Info

Title:
The accurate traveling wave solution to a generalizedcompressible lever equation
文章编号:
1673-3851 (2018) 09-0624-06
作者:
王越张丽俊
浙江理工大学理学院,杭州 310018
Author(s):
WANG Yue ZHANG Lijun
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
行波解动力系统分支理论可压缩杠杆方程
分类号:
O193
文献标志码:
A
摘要:
运用微分方程定性理论和动力系统分支方法研究了一类广义可压缩杠杆方程的有界行波解。再次说明了行波系统的奇直线对非线性波方程行波解光滑性的影响,奇直线的存在使得非线性波方程的行波解产生了奇异性。通过对奇异行波系统的与奇直线相交或趋于奇直线的轨道的分析,得到了该方程的奇异行波解。结果证明,广义可压缩杠杆方程具有光滑孤波解、光滑周期波解、孤立peakon、周期peakon、周期cuspon和compacton。

参考文献/References:

[1] Li J B. Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions[M]. Beijing: Science Press,2013:9-15.
[2] Li J B, Liu Z R. Travelling wave solutions for a class of nonlinear dispersive equations[J]. Chinese Annals of Mathematics, Series B,2002,23(3):397-418.
[3] Dai H H. Model equations for nonlinear dispersive waves in a compressible MooneyRivlin rod[J]. Acta Mechenica,1998,127(4):193-207.
[4] Dai H H, Huo Y. Solitary shock waves and other travelling waves in a general compressible hyperelastic rod[J]. Proceedings of the Royal Society of London A,2000,456(1994):331-363.
[5] Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Physical Review Letters,1993,71(11):1661-1664.
[6] Alber M S, Camassa R, Holm D D, et al. The geometry of peaked solitons and billiard solutions of a class of integrable PDEs[J]. Letters in Mathematical Physics,1994,32(2):137-151.
[7] Cao C, Holm D D, Titi E S. Traveling wave solutions for a class of onedimensional nonlinear shallow water wave models[J]. Journal of Dynamics and Differential Equations,2004,16(1):167-178.
[8] Chow S N, Hale J K. Method of Bifurcation Theory[M]. New York: Springer,1981:20-25.
[9] Geyer A, Maosa V. Singular solutions for a class of traveling wave equations arising in hydrodynamics[J]. Nonlinear Analysis Real World Applications,2016,31:57-76.
[10] Lenells J. Classification of travelling waves for a class of nonlinear wave equations[J]. Journal of Dynamics and Differential Equations,2006,18(2):381-391.

相似文献/References:

[1]原培英,张建明,张丽俊.一类复mKdV方程的精确行波解[J].浙江理工大学学报,2019,41-42(自科四):522.
 YUAN Peiying,ZHANG Jianming,ZHANG Lijun.Exact traveling wave solutions to a complex mKdV equation[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科5):522.

备注/Memo

备注/Memo:
收稿日期: 2018-04-05
网络出版日期: 2018-06-04
基金项目: 国家自然科学基金项目(11672270);浙江省自然科学基金项目(LY15A010021)
作者简介: 王越(1991- ),女,安徽六安人,硕士研究生,主要从事微分方程方面的研究
通信作者: 张丽俊,E-mail:lijun0608@163.com
更新日期/Last Update: 2018-09-12