|本期目录/Table of Contents|

[1]李文波,赵强强,沈一峰,等.基于无机盐诱导的可控聚集制备纳米多孔结构减反射涂膜[J].浙江理工大学学报,2018,39-40(自科5):566-572.
 LI Wenbo,ZHAO Qiangqiang,SHEN Yifeng,et al.Nanoporous antireflection coating prepared by controlled aggregation based on inorganic salt induction[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科5):566-572.
点击复制

基于无机盐诱导的可控聚集制备纳米多孔结构减反射涂膜()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第39-40卷
期数:
2018年自科5期
页码:
566-572
栏目:
出版日期:
2018-08-31

文章信息/Info

Title:
Nanoporous antireflection coating prepared by controlled aggregation based on inorganic salt induction
文章编号:
1673-3851 (2018) 09-0566-07
作者:
李文波赵强强沈一峰杨雷
浙江理工大学,a.材料与纺织学院;b.先进纺织材料与制备技术教育部重点实验室,杭州 310018
Author(s):
LI WenboZHAO QiangqiangSHEN YifengYANG Lei
a.College of Materials and Textiles; b.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
可控聚集纳米多孔乳胶膜减反射Zeta电位
分类号:
O632.12
文献标志码:
A
摘要:
纳米多孔膜是一种重要的减反射膜,目前制备方法存在步骤繁琐、条件苛刻以及效率低等不足,如何简便、高效地制备减反射性能优良的纳米多孔涂膜具有很大的挑战性。文章提出以无机盐可控地诱导成膜过程中乳胶粒聚集,一步制备纳米多孔结构减反射涂膜的设想。在以胶乳制备多孔结构减反射时,分别考察了氯化铵(NH 4Cl,酸式盐)、氯化钠(NaCl,中性盐)和碳酸氢铵(NH 4HCO 3,碱式盐)为致孔剂时,涂膜的结构及减反射性能。研究表明:为达到实验的目的,与NH 4Cl和NaCl相比,NH 4HCO 3更适宜作为纳米多孔膜的致孔剂;胶乳中加入NH 4HCO 3后,乳液分散稳定性提高;被涂覆于基材表面后,乳液中NH 4HCO 3的浓度随着水分的蒸发不断增高,引起乳胶粒子聚集、堆积形成多孔结构;之后,在100 ℃干燥涂膜时,NH 4HCO 3又可通过热分解而被去除;以NH 4HCO 3为致孔剂时,涂膜具有纳米多孔结构,对入射光散射小,单面涂膜玻璃增透率提高3.6%,增透效率明显高于采用NaCl或NH 4Cl所制的涂膜。

参考文献/References:

[1] Guo Z, Zhao H, Zhao W, et al. Highquality hollow closedpore silica antireflection coatings based on styreneacrylate emulsion@ organicinorganic silica precursor[J]. ACS Applied Materials & Interfaces,2016,8(18):11796-11805.
[2] Buskens P, Burghoorn M, Mourad M C D, et al. Antireflective coatings for glass and transparent polymers[J]. Langmuir,2016,32(27):6781-6793.
[3] Ren T, He J. Substrateversatile approach to robust  antireflective and superhydrophobic coatings with excellent selfcleaning property in varied environments[J]. ACS Applied Materials & Interfaces,2017,9(39):34367-34376.
[4] Ji L, Hsu H Y, Li X, et al. Localized dielectric breakdown and antireflection coating in metaloxidesemiconductor photoelectrodes[J]. Nature Materials,2017,16(1):127-131.
[5] Poitras D, Dobrowolski J A. Toward perfect antireflection coatings. 2. theory[J]. Applied Optics,2004,43(6):1286-1295.
[6] Mizoshita N, Ishii M, Kato N, et al. Hierarchical nanoporous silica films for wear resistant antireflection coatings[J]. ACS Applied Materials & Interfaces,2015,7(34):19424-19430.
[7] Kaminski P M, Lisco F, Walls J M. Multilayer broadband antireflective coatings for more efficient thin film CdTe solar cells[J]. IEEE Journal of Photovoltaics,2014,4(1):452-456.
[8] Ji S, Song K, Nguyen T B, et al. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection[J]. ACS Applied Materials & Interfaces,2013,5(21):10731-10737.
[9] Macleod H A. Thinfilm Optical Filter[M].4th ed. Boca Raton: CRC Press,2010:73-104.
[10] Mattox D M. Handbook Of Physical Vapor Deposition (PVD) Processing[M]. 2nd ed. Norwich NY:William Andrew,2010:545-552.

备注/Memo

备注/Memo:
收稿日期: 2018-1-19
网络出版日期: 2018-04-04
基金项目: 国家自然科学基金项目(21606206);浙江省自然科学基金项目(LY18E030008,LY15E030013,LY12E03008);浙江省公益技术应用研究项目(2016C31074,2017C31033)
作者简介: 李文波(1991-),男,湖北仙桃人,硕士研究生,主要从事新型染整化学品及绿色合成技术方面的研究
通信作者: 杨雷,E-mail:yanglei@zstu.edu.cn
更新日期/Last Update: 2018-09-12