|本期目录/Table of Contents|

[1]吴瑢蓉,熊杰.玉米醇溶蛋白/聚乳酸纳米纤维膜制备及其力学性能[J].浙江理工大学学报,2014,31-32(自科6):626-630.
 WU Rong rong,XIONG Jie.Preparation and Mechanical Properties of Zein/Polylactic Acid Nanofiber Membrane[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科6):626-630.
点击复制

玉米醇溶蛋白/聚乳酸纳米纤维膜制备及其力学性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第31-32卷
期数:
2014年自科6期
页码:
626-630
栏目:
(自科)纺织与服装工程
出版日期:
2014-11-10

文章信息/Info

Title:
Preparation and Mechanical Properties of Zein/Polylactic Acid Nanofiber Membrane
文章编号:
1673-3851 (2014) 06-0626-05
作者:
吴瑢蓉 熊杰
浙江理工大学, a. 材料与纺织学院; b. 先进纺织材料与制备技术教育部重点实验室, 杭州 310018
Author(s):
WU Rong rong XIONG Jie
a. School of Materials and Textiles; b. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
玉米醇溶蛋白 聚乳酸 有序排列纤维 双轴力学性能
分类号:
R318
文献标志码:
A
摘要:
采用静电纺丝方法分别制备了无序和有序排列的玉米醇溶蛋白/聚乳酸共混纳米纤维膜,研究它们的形貌、单轴拉伸性能和双轴拉伸性能。结果表明:聚乳酸的加入增加了玉米醇溶蛋白的可纺性。对于无序排列纳米纤维膜,随着聚乳酸含量增加,纤维直径变粗,纤维膜断裂应力和伸长率都有了很大的提高。对于有序排列的纳米纤维膜,随着滚筒转速的提高,纤维直径变细,纤维沿滚筒转速方向有序排列越规整;环向的纤维膜断裂应力随转速提高而增大,而断裂伸长率减小,轴向的断裂应力随转速提高而减小,断裂伸长率增大。与无序排列纤维膜的等速双轴循环拉伸相比,有序排列纤维膜的环向拉伸强力明显比轴向的大,随着循〖JP2〗环次数增多,回复滞后圈越小;且经多次等速双轴循环加载后,无序纤维膜的断裂强力较循环加载前大;有序排列的纤维膜环向的断裂强力较循环加载前小。

参考文献/References:

[1] Zhang K H, Qian Y F, Wang H S, et al. Genipin crosslinked silk fibroin/ hydroxybutyl chitosan nanofibrous scaffolds for tissue engineering application[J]. Journal of Biomedical Materials Research. Part A, 2010, 95(3): 870-881.[2] Lin J T, Li C H, Zhao Y, et al. Co electrospun nanofibrous membranes of collagen and zein for wound healing[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 1050-1057.
[3] Aussawasathien D, Teerawattananon C, Vongachariya A. Separation of micron to submicron particles from water: electrospun nylon6 nanofibrous membranes as prefilters[J]. Journal of Membrane Science, 2008, 315(1-2):11-19
[4] Tu J W, Wang H J, Li H W, et al. The in vivo bone formation by mesenchymal stem cells in zein scaffolds[J]. Biomaterials, 2009, 30(26): 4369-4376.
[5] Yin Z, Chen X, Chen J L, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers[J]. Biomaterials, 2010, 31(8): 2163-2175.
[6] Cai Y Z, Zhang G R, Wang L L, et al. Novel biode gradable threedimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2012, 100(5): 1187-1194.
[7] Arras M L, Grasl C, Bergmeister H, et al. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes[J]. Science and Technology of Advanced Materials, 2012, 13(3): 1-8.
[8] Yan C, Lin J, Fei Y N, et al. Preparation and characterization of electrospinning PLA/curcumin composite membranes[J]. Fibers and Polymers, 2010, 11(8): 1128-1131.
[9] Liu H, Wang S D, Qi N. Controllable structure, properties, and degradation of the electrospun PLGA/PLAblended nanofibrous scaffolds[J]. Journal of Applied Polymer Science, 2012, 125(S2): E468-E476.
[10] Au H T, Pham L N, Vu T H T, et al. Fabrication of an antibacterial nonwoven mat of a poly (lactic acid)/chitosan blend by electrospinning[J]. Macromolecular Research, 2012, 20(1): 51-58.
[11] Fennessey S F, Farris R J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns[J]. Polymer, 2004, 45(12): 4217-4225.

备注/Memo

备注/Memo:
收稿日期: 2014-01-14
基金项目: 国家自然基金(11272289)创新团队;浙江省重点科技创新团队计划资助(2011R50003)
作者简介: 吴瑢蓉(1988-),女,浙江长兴人,硕士研究生,研究方向为静电纺纳米纤维及其生物医学性能
通信作者: 熊杰,E-mail:jxiong@zstu.edu.cn
更新日期/Last Update: 2014-11-19