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Solution of an extremal problem on the Hubner function
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Abstract: For r € (0,1). the function M(r) = [2r"?K(+)K "(+)/x] + logr is known as the
Hiibner function, where Kand K" are the complete elliptic integrals of the first kind. In this paper,
the authors solve an extremal problem on the function M, and present new sharp lower and upper
bounds of M(7), by which some known bounds of M(7) and the Hersch-Pfluger distortion function
ok (r) for K € (0,90) are improved.
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0 Main Results

Throughout this paper, we let B? denote the unit disk {z | 2 € Cwith | = |< 1}, r'=+1— r? for each
r €[0,1], QCx(B?*) ={f | fis a K-quasiconformal mapping of B?onto itself with f(0) =0} for K > 1.
Forr € (0,1), let Kand K 'be the complete elliptic integrals of the first kind defined by

K=K(r) ZJM (1 —r? sin®t) V2dt

0

(1
K'=K'(r) =K'
K(0) ==n/2,K(1) =co
and forr € [0,1], let E and E’ be the complete elliptic integrals of the second kind defined as
/2
E=E() :J V1 —r? sin®z dt
0 (2)
E'=E’'(r) =EG")
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(cf. [1]. Forr € (0,1), put
M@ :zr/zK(r)K/(r)+logr
T

and let 2 () be the conformal modulus of the Grotzsch ring B*\[ 0,7 |, which is usually called the Grotzsch
ring function. It is well known that 4 () has the following expression
1 (r) ==K (r)/[2K(r) ] (3
(cf. [2-3]). For each K =1 and for» € (0,1), define the function ¢ x on[0,1] by
ok (r) =p " (u(r)/K),r € (0,1
ok (0) =gy (1) — 1=0

which is a strictly increasing homeomorphism and called the Hersch-Pfluger distortion function (cf. [ 1-

4

2]). The special functions K, E, ;x and ¢k are indispensable in quasiconformal theory (cf. [1-4]).

In 1952, Hersch and Pfluger extended the well-known classical Schwarz lemma for analytic functions
to K-quasiconformal mappings of B* into (or onto) itself with the origin fixed, for K > 1 (cf. [1-2, 5]).
They proved that for all = € B*,

| () [<< o]z D (5
if fis a K-quasiconformal mapping of B? into itself, and
901K<‘Z‘><|f<Z)‘<§0K(|Z|) (6)

for f € QCk(B?). Each equality in (5)—(6) can be attained. This result is known as the (implicit)
quasiconformal Schwarz lemma.

One of the tasks in studying the properties of quasiconformal mappings is to find the lower and upper
bounds of gk (r). It is well known that ¢k (+) not only plays an extremely important role in quasiconformal
theory [1-3, 6-7], but also has important applications in some other fields of mathematics such as number
theory. In number theory, the solutions to Ramanujan’s classical modular equations and singular values of
complete elliptic integrals can be expressed by ¢ () (cf. [1, 8-9]). In 1920”s, Ramanujan gave numerous
algebraic identities satisfied by ¢ (r) in his unpublished notebooks (cf. [10]). Hence the research on the
bounds of ¢ (+) is quite significant. Many mathematicians have obtained various bounds for this function
[1-2, 9, 11-15, 19]. The followings are examples for such kind of known results.

In 1960, Wang [ 16] proved the inequality

ok (r) < A1/ K 7
for all » € (0,1) and K > 1. Later, Hiibner [ 17 ] proved the following sharp inequality
ok (r) < r"Fexp((1—1/K)M(r)) (8

forall » € (0,1) and K = 1. The inequality (8) is usually called Hiibner’s inequality, and the function M
is sometimes called the Hiibner function or the Hiibner upper bound function. However, M(7) is defined in
terms of special functions K(#) and K "(r). Therefore, many mathematicians have been committed to
acquiring the sharp lower and upper bounds for ¢ (r) which are given in terms of elementary functions,
by obtaining those for M(r).

In 1999, Qiu et al [ 7] proved that if a(r), 6(r) and ¢(r) are real functions on (0,1), then the

inequalities
o (r) < r'"fexp((1—1/K)a(r)) 9
ok (r) < rfexp((1—K)b(r)) (10)
ok (r) > rfexp((1 —K)c(r) (1D

hold for all » € (0,1) and K > 1 if and only if a(r) = M), b(r) << M) and ¢(r) = p(r) + logr,
respectively. This again also shows that the function M(7) in (8) is best possible. In [ 7], the authors also

found very good approximations forM(r), and obtained the following sharp bounds of M(7)
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max{(] — r)arth«/?logLr “arthrl< M(r) = min 2(1 — r)arthﬁ’r “arthrlog/ll (12)
v rJ [ J
In 2010, Qiu et al [14] improved (12) by proving the following double inequality
[(1*log4)r+log4]ﬂ<l\/{(ﬂ < r'¥?logd (13)
r

for all € (0,1). In 2014, Qiu et al [ 18] improved the upper bound in (13) and solved the following
extremal problem: What is the value of

W log(log4) — logM(r)
ﬁ 0<r<1 log(l/(l —7r))

They proved that for» € (0,1),

(1—r)Plogd << M(r) << r'¥°log4 (14)
with the best possible constant 8 = 1. Based on the known results such as those above-mentioned, the
following question is natural:

Question 1. What are the best values of @ and § such that
(1 —r9)logd < M(r) < (1 —r")log4 (15)
for all » € (0,1) Or equivalently, what are the values of
J o log(log4) — log(logd — M(r))

e log(1/r) 16)
18 log(log4) — log(logd — M(»))
o7 S log(1/r)

The main purpose of this paper is to give the answer to Question 1, by proving our following main
result.

Theorem 1. a) Forr € (0,1), let f(+) = M) +r"logd and A (r) = min{r"*°,1 10239025 —r*°}. Then
there exists a unique number , € (0 83,0, 84) such that the function f is strictly increasing on (0,7, |, and
decreasing on [ r,,1), with f(07) = f(17) = log4 and f(r,) << 1. 5283. In particular, forr € (0,1),

(1 —7r")]ogd < M(r) << A(r)log4 an
b)Let o be defined by (16). Then

a =~ 1. 8101
(18)
9/5 <a <1 81013
In particular, for all» € (0,1), K > 1, ¢ € B*and f € QCk(B?*),
SDK (7") < rlﬂK4(171x’K>A<r> (19)
SDI,’K(") < ',1(4(1 K)(1—r9/5) (20)
| f(Z) ‘<4<171,"K)A(r) ‘ < ‘L’K (21)

¢) There is no finite number § € (0,0) such that M(») << (1 —r°)log4 holds for all » € (0,1). More

precisely, the value of § in (16) is oo,
1 Preliminaries

In this section, we shall prove two lemmas needed in the proof of our main result. First, let us recall
the following well-known formulas [ 8, Theorem 4. 1]
d7K _E— r'?K
dr rr’?
dE_E—K

dr r

(22)
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which will be frequently applied later.

Lemma 1. a) There exists a number r; € (0. 543,0. 544) such that the function f, () = r**[K(r) —
E(r)] is strictly decreasing on (0,7, ], and increasing on [r;,1), and the function f,(r) =
7 K (»)[KG) —E()] is strictly increasing on [0, 544,1).

b) There exists a number r, € (0. 027,0. 028) such that the function f;(r) = r'°K () is strictly
increasing on (0,7, |, and decreasing on [r,.1).

¢) The function f(r) = M(r) + r°"log4 is strictly increasing on (0,0, 081 ].

Proof. a) Forr € (0,1, let f.(+) = f5(r) — 2. 3, where fs(r) = *’E/[+'*(K’ — E)]. Then by
differentiation,

PG =K—E f, () (23)

By [ 8, Lemma 5 4 (1)], f, is strictly increasing from (0,1) onto (— 0. 3,20). Since f,(0, 543) =
—0. 00035+ and f, (0. 544) =0. 00115---, the result for f, follows from (23).

By [8, Lemma 5 4(1)], the function » =/ K "(+) is strictly increasing on (0,1). Hence f,(r) =

Jr K'f1 () is strictly increasing on [0. 544,1), and the result for f, follows.
b) Let f5(r)=(1/5) — f,(r), where f;(r)=(E " —r*K’')/('*K’). Then by differentiation,
rf ) =K fi () 24
By [8, Lemma 5 2(4)], f; is strictly decreasing from (0,1) onto (— 3/10,1/5). Since f(0. 027) =
0. 0002+++ and f4(0. 028) =—0. 0012+, the conclusion in part b) follows from (24).
¢) Leta =(9xlog2)/10=1. 959827481273+, and f; (r) =(K—E) /r* which is strictly increasing from
(0,1) onto (xt/4,22) by [ 8, Lemma 5. 2(3) ]. Differentiation gives

o D/ A=Fo(r) =a—r "K' (K—E) =a— ;) fs () (25)
By part b), f, is strictly decreasing on (0,0. 027, so that
fo(r) = f,(0. 027) =0. 052788 -+ for r € (0,0. 027 ] (26)

It is clear that for each number 8 € (0,2), the function r =(K—E)/r#f =r*7 . (K—E)/r’ is strictly
increasing on (0,1). Hence for » € (0. 027,0. 028],
K(0. 028) —E(0. 028)

Fo(r) =a —K ' 027) o — 0, 03882+ 27
By part b) and [ 8, Lemma 5 2(2)], forr € [0. 028,0. 0817,
fo(r) >a— f,(0. 028) f(0. 081) =0. 04863+ (28)

Hence part ¢) follows from (25)—(28). []
Lemma 2. a) The function f1,(r) = r* K () is strictly increasing on (0,0. 5447, and the function
11 () = r**K' () is strictly increasing on (0,0. 15].
b) The function f,(r) = r > [K(r) — E(r)] is strictly increasing on [0. 5,1), and the function
f15(r) = r *'[K(r) —E(r) ] is strictly decreasing on (0,0, 15].
Proof. a) Let /1, (r)=E"—r*K")/G"*K"), fi: )=0. 426— 1, (+) and f15(r)=0. 3— f 1, (). Then
Jro‘ T () =K f15 ()
W7 f 0 G =K f1 ()
By [8, Lemma 5 2(4)], fi; and f s are both strictly decreasing on (0,1). Since f15(0. 544) =0. 00067+
and f3(0. 15) =0. 00289---, the results in part a) follow from (29).
b) Let /5 be as in (23). Then we have
jr& 2FL ) =K—B[f;G)—2 226]
L1 ) = (K—B) [ f () — 2 1]
Since f5(0. 5) =2, 24086+ > 2. 226 and f;(0. 15) =2 01721--- << 2. 1, part b) follows from (30). []

(29)

(300
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2 Proof of Theorem 1

a) The proof of part a) will be completed by our investigating four cases.

Let f, be as in Lemma 1, fs as in (25), a = (97log2)/10, and let £, () = K (K—E)/r*°. Then f1, (+)

=JrK'() f1 (), and by (25),
D/ A=Fo(r) =a — f1.(r) (31)

Case (). r € [0. 544,1).

By [8, Lemma 5 4(1)] and Lemma 1 a), f,; is strictly increasing on [0, 544,1), and hence f, is
strictly decreasing on [0, 544,1). Since f, (0. 83) =0. 00836+ and f, (0. 84) =—0. 01943+--, it follows from
(31) that there exists a number », € (0. 83,0. 84) such that f is strictly increasing on [0. 544,r, | and
decreasing on [ro.1).

Case (iD. r € [0. 5,0, 544 .

We can rewrite f1;(r) as f1;(r) = f1,(r) f1:(r). Hence it follows from Lemma 2 that f; is strictly
increasing on [0. 5,0. 544 ], and f, is strictly decreasing on [0. 5,0. 544 ] with f,(0. 544) = 0. 31378--.
Hence by (31), f is strictly increasing on [0. 5,0. 544 ].

Case (iiD).r € [0. 15,0. 5].

Let f15(r) =v#K (). Then f1:(r) = f1:() f1 (), and it follows from [8, Lemma 5 4(1)] and
Lemma 1 a) that forr € [x,y] C [0 15,0. 5],

folr) = fulx.y) =a— 1 (x)fs(y) (32)
Computation gives: f1,(0. 22,0, 5) =0, 03826+++, f1,(0. 15,0. 22) =0. 04048-+-. Hence by (32), fy(r) >0
forr € [0 15,0. 5], so that f is strictly increasing on [0, 15,0. 5] by(31).

Case (iv).r € [0 081,0. 15].

Let f, and f 5 be as in Lemma 2. Then f1; (r) =/, (r) f15(r), and it follows from Lemma 2 and (31)
that for» € [z .y ] C [0. 081,0. 157,

SfoGr) >a— f1;(0.15) f; (0. 081) =0. 07104+,
and hence by (31), f is strictly increasing on [ 0. 081,0. 157.

From the above discussion, we see that f is strictly increasing on [ 0. 081,7, | and decreasing on [ r,,1). This,
together with Lemma 1 ¢), yields the piecewise monotonicity property of f.

Clearly, f(07)=f(1")=log4. It is well known that M is strictly decreasing from (0,1) onto (0,log4)
(cf. [8, Theorem 5. 5]), so that

f(ro) << M(0, 83) 4+ 0. 84" logd =1, 528237374+ < 1. 528237375.
Hence by the piecewise monotonicity property of f and (14), we obtain
(1—7r"")logd << M(r) << min{r"*°logd, (1 —r*")logd + f(r,) — logd}
< min{r"*"log4, (1 —r**)logd + 0. 1419430131}
=min{r"*°,1—r"" +0. 1419430131 /log4 } log4
=min{r®¥°, (1. 102390240-++) — " }logd << A (r)logd,
yielding (17).
b) The first inequality in (18) follows from (17). Taking » =0. 037, we obtain

log(log4) — log(logd — M@))
log(1/7r)

and hence the second inequality (18) holds.
The inequalities (19) and (20) follow from (9) and (10), while (21) follows from (5) and (19).
o) Let F(r) =[log(log4) — log(logd — M(r))]/log(1/r). Then by |"Hoépital’s rule,

=1 81012--- < 1. 81013,
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L M'G) 4. KE-B 1 . e
Fd™ = lrlfll logd —M(r) = lrli? logd —M(r)  log2 lylanll(K B = (33)
It is clear that for all » € (0,1), M(r) << (1 —r?)logd&6 = sup F(r). Hence § =< by (33), and part ¢)
0<<r<Z1

follows. []
Remark. a) Let g (r) =r"°+,°° —1. 10239025. Then it is easy to show that g is strictly increasing and
then decreasing on (0,1). Since g(0) = g (1) = —0 10239025 and g (0. 7) = O 007358+++, »*° and 1. 10239025 —

¥ in (17) are not directly comparable on (0,1).

b) The function f; in (31) is not monotone on (0, 1). As a matter of fact, f; is strictly increasing on
[0. 544, 1) as shown in the proof of Theorem 1 a). On the other hand, we have f’1; (0. 25)=—0. 62894---.
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