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Abstract: In this paper, the authors present several kinds of series expansions of the
Ramanujan constant R(a) = —2y—¢(a) —¢(1—a) ,and monotonicity and convexity properties of
certain combinations defined in terms of R(a) and polynomials, according to different application
needs. By these results, several asymptotically sharp upper and lower bounds are obtained for
R(a), and some known related results can be easily improved. In addition, several identities
satisfied by the Riemann zeta function are provided.

Key words: Ramanujan constant; psi function; series expansion; monotonicity and
convexity; inequalities

CLC number: O156. 4 Document code: A Article ID; 1673-3851 (2017) 01-0104-06

0 Main Results

For complex variable 2 with Re 2>>0,the gamma and psi functions are defined as

I'(2)
'z’

respectively. (Cf. [1-4] for their basic properties. ) Throughout this paper, we let y=0. 577215+ denote

(D

() — f}"fﬂeﬂdz, P(z) =

the Euler constant as usual. It is well know that the function

R(a) =— 27— () — (1l —a)» a € (0,1), (2)
which is sometimes called the Ramanujan constant although it is in fact a function of a, is always with the
study of zero-balanced Gaussian hypergeometric function F(as1-a;1;2). (Cf. [1-3 & 5-137.) By the
symmetry, we can assume that a € (0,1/2] in (2).

It is well known that the function R (a)is essential not only in the study of the zero-balanced Gaussian
hypergeometric functions F(a,1-a;1;2) and the theory of Ramanujan’s modular equations, but also in some
other fields of mathematics, and its properties are indispensable for us to show properties of F(a,1-a;1;2)
and the functions appearing in Ramanujan’s modular equations. (See [1-3 &. 5-137].) Some authors have
obtained various analytic properties and functional inequalities for this function. (Cf. [3 & 11-16].) In
[16], for example, it was proved that R(x) has the following series expansion

R(z) = (1/2) +2>,¢2n+ D™, (3)

n=1

Here and in the sequel, £(s)=2>1;2,k *denotes the Riemann zeta function as usual. However, the proof of
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(3) given in [16] is too complicated.
We shall also need the following special sum

An+1) = D>)2k+1D"" forn € N. D

By [1.23.2.20], A(n) and {(n) satisfy the following relation
A(n) = (1 —2")¢n) for n € N with n = 2. (%)

Motivated by the importance and wide applications of the Ramanujan constant, the authors intend to
continue to study the properties of (x) in this paper. Corresponding to different application needs, we
shall present several kinds of series expansions for the function R(x), including a very simple proof of
(3), and show the monotonicity and convexity properties of certain combinations defined in terms of R(x)
and polynomials. By these results, several new asymptotically sharp lower and upper bounds of R(x) are
obtained, and some related known results for R(x) can be easily improved. In addition, several identities
satisfied by the Riemann zeta function are derived. We now state our main results.

Theorem 1 For x€(0,1/2] and n€EN, let y=x(1—2),b,=log2—1,co=—1,d, =log4,and set a,=
[1+(—D"J¢+1),

1+<—1>”§3

b, =
2 (2/e+1)"+1

= %[1 +(—D"JAn+1D —17,

- <—1>"Z (szj/a)lm ody = [1+ (= D" A+ D.

Then we have the following series expansions for R(x) ;

a) For x&€ (0,1),

R(z) = —+ Ear :(177+ ”Z;a,,u—w (6)
b) For € (0,1/2],
R(I)——+42b,,(1—2 )":—+4Ez;2,,<1 Ay)", )
¢) For x€(0,1/2], - -
R(x) = —+ Zc,,y (8)
d) For € (0,1/2], -
R(z) = zid”u—m" = 22@,,(1—4”" = 1og16+4§}u2n+1><1—4y>". 9

n=10 n=0 n=1

Our next theorem presents some analytic properties of R(x), including its asymptotically sharp lower and
upper bounds.
Theorem 2 Let y and b, be as in Theorem 1, and set a=2§(5)=2.07385++,6=8[8log2—¢(3) —4]=

7¢(3) ]

2. 744964+ ,c=2¢(3) =2. 40411+ ,a=3—logl6=0. 22741+ ,f= [ 4=0.20719-

Then we have the following conclusions:
a) The function f(x)=x '"[R(x)—(1/x) —ca®] is strictly increasing and convex from(0,1/2] onto
(a,b]. In particular, for x€ (0,1/27,
(/) Fecxttaxr' <R()<(1/x)+cxt+ax* +20b—a)x°, (10)
with equality if and only if x=1/2.
b) The function g(2)=(1—22) *[R(x) — (1/y) —4b, Jis strictly decreasing and convex from (0,1/2)
onto (B,a). In particular, for x€ (0,1/2],
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I
x(1—2x)

with equality in each instance if and only if x=1/2.

0<<R(x)— +4(1—log2) —p—2x)"'<<(a—pP (1—2x)°, 1D

¢) The function h (y)=[(1/y) —1—R(x)]/y is strictly decreasing and convex from (0, 1/4 Jonto
(4a,1). In particular, for x€ (0,1/2],

—(1—4)x(1—2)[1—4x(1—2) |[<R(x) — 1 - +1+4ax(1—2)<0, (12)

x(1—x)

with equality in each instance if and only if x=1/2.

1 Proof of Theorem 1

a) Let fi(x)=—y—p(1—x). Clearly, f,(0)=0. By [1,6.3.5],R(x)—(1/2)=f, () —[¢(x+1)+7].
It is well known that for n€ N,
(P()(l)_(_l)}ln'ZW (13)
(See [1,6.4.10].) By differentiation and (13), we obtain
() =(—=D" " A —2), f7(O=(—D""¢g™ (D) =n! {nt+1),

so that
i (n) o
Fi(a) = f£10) + Z h (O)x” = Dt +Dar. (14)
n=1
On the other hand, by [1,6.3.5.6.3.14 & 6. 3. 16],
i — ntl no__ S #
y+¢<r>+ =y + ¢ +a) = Z( D" e+ Da ;n(n+x). (15)

Hence the first equality in (6) follows from (14) and (15).

The second equality in (6) holds since R(1 —x) = R(x).

b) Let f,(x) = R(x) — (1/y) = R(x) — {(1/2) +[1/(1 —x)]}. By(2)and(15) ,we can write f,(x)
as

fo(e) =—[2v+¢a+ 1)+ ¢2—a)]. (16)
with f,(1/2) =—2[v+ ¢(3/2)] = 4(log2 — 1) = 4b,. Differentiation gives
() = (=D @2 —a) — ¢ (x4 1D

for n € N, so that by (13),

EV(L/2) = 0 = by s[5 (1/2) =— 2P (3/2) = 47 (2n) 1by,. 17
Hence f,(x) has the following power series expansion at x = 1/2:
(n) n - -
F2() = dby + 2 ik (1/2)(1—%) = 10 (1 — 200" = 45, (1 — 22", (18)

which yields the first equality in (7). The second equality in (7) holds since(1 —2x)% = 1 — 4y.
e) Let f3(x) = [(1/y) —R(x) —1]/y, and let
2k 41
Sl = 2 FEFDGE +E+
Clearly, f,(0) =—¢,. By(2) and the first equality in (15),

fs(x):[7+¢(I+1)]+[yj¢((l_x)+1)]_1. 19)

By the third equality in (15), f3(x) can be rewritten as

_1 l—x 1 o,
folo) Z [/e+1 gy g /e+1j_f4(y)' (20)

since Ejzlfk(k + 1) ' = 1. Differentiation gives
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2k 41
v = (—D"n! . 21
S =« >"'§k</€+1><k2+k+y>"“ b
f(") (O) . . . .
ith —¢,+1. Hence f,(y) has the following power series expansion
(n) - -
Fiw = fo DL S = D (22)
n=1 n=0 n=1
This, together with(20), yields(8).
dLet f5(x) = 1/[x(1 —x)]. Then
. 4 2
R 1—22)% 2
fr) = 1=y 42( @) (23)

n=0

and hence by the first equality in (7),

R(2) = f:(2) +4 D00, (1— 220" = 4>, (hy, + 1) (1 —22)"

n=0 n=0

= logl6+4 > ,AC2n+ 1 (1 —22)" =2 >,d,(1 — 22)"

n=1 n=0
= logl6 +4 > A2n+ D (1 —4y)" = 2> d,, (1 —4y)".

n=1 n=>0

This yields (9).

2 Proof of Theorem 2

a) For n € N, let a, be as in Theorem 1. Then f(x) = 2 *[R(2) — (1/x) —a1x —a,x* —asx*],and

it follows from (6) that

f(x) = i)a,,x”f4 = 2a,,+4x” = 22§(2n+5)12”.

n=14 n=0 n=0

and hence the monotonicity and convexity properties of f follow.

24P

Clearly, f(1/2) = b. By(24), f(07) = a. The double inequality (10) and its equality case are clear.

b) It follows from (7) that

g(x) = 4 Db, (1 — 220" 0 = 4 > b, (1 — 22)"

n=1 n=0

which yields the monotonicity and convexity properties of g since all the coefficients b,,,, > 0.

(25)

Clearly,g(0") =—1 — 4by, = a. By(25),g((1/2)") = 46, = B. The double inequality (11) and its

equality case follow from the monotonicity and convexity properties of g.

¢) It follows from (15) that

ol 1 _
h(y)—;[1+lix 1+ 27+ ¢(a) + ¢(1 x>]
_rted+o]+r+¢2—2)]—1

y

1N U 1—x ) 1
7?[2;(n+17+n+1—1j Zn(n+1)]

n=1 n=1

_ 1 n+2y 1 j: 2n+ 1
a y; n( ‘tnty ntl ”Z:; nn+ DG +n+3)°

from which the monotonicity and convexity properties of h follow.

Clearly,h(1/4) = 4(3 —logl6) = 4a and

Py 2n+1 (n+1)% —n? _ 1 S 1
hoh = 2 [ 2 TE D DI b E [CES

n=1 n=1 a=1 n’ n=1

The double inequality (12) and its equality case are clear.
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Corollary The Riemann zeta function satisfies the following identities

2(—1)"@’(77) =1, (26)
24*’@'(271—0—1) = logd — 1, (27)
-
i[<1—2 e@n+1) — 1] = (3—logl6) /4, (28)
p
i[§<2n+1>—1] = 1/4. (29)

n=1
Proof It follows from (15) that

Rm—% —— [y +¢a+D]—[v+ oA —24+D] = D~ D¢+ D"+ A —2"]. (30

n=1
Letting x — 0 in (30), we obtain (26) by (8).
Taking x = 1/2 in the first equality in (6), we obtain the identity (27). It follows from the first
equality in (7) that

R — (1/a) = [1/(0 — )] — 41 — log2) + 43 b (1 — 2297, 31

n=1

By the first equality in(6), lim[R(x) — (1/2)] = 0. Hence by letting x — 0 in (31), we obtain

x>0

S = DA -2 et 1 —1]= (3 logl6) /4.

n=1 n=1

so that (28) holds. (29) follows from (27) and (28) .
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Ramanujan E#HHREBRERAS ELTH

ENR, THEF, ZMEHR

(Wit E I REFEEFRE. M 310018)

B OE.RELRGEAEER. 4 ET Ramanujan F 4 R(a)=—27y— (&) —¢(1—a) W JLE B HKEF X . R(a)5 %A X
o —de g Sy EiR Mo Gl SR A X EERRKFT RO BH LM A LTR, ERXERHRETX, X T R(w) ) — 2
ot s Hid kidt, irE L B T Riemann zeta & 3% B 69 LA F X,

X7 : Ramanujan % #;psi 2R GEARE T L AR UGB RFX
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