浙江理工大学学报,第 30 卷,第 1 期,2013 年 1 月 Journal of Zhejiang Sci-Tech University Vol. 30, No. 1, Jan. 2013

文章编号: 1673-3851 (2013) 01-0119-05

KCoF₃ 的 Rietveld 法结构精修及电学性能研究

邹以慧1,李文丽1,张 岩1,王顺利1,李培刚1,唐为华1,2

(1. 浙江理工大学物理系光电材料与器件中心,杭州 310018; 2. 北京邮电大学理学院,北京 100876)

摘 要:利用简单的液相合成方法,在室温条件下制备了 KCoF₃ 粉末状产物。通过 X 射线粉末衍射(XRD)和扫描电镜(SEM)对其物相结构和形貌进行了表征,结果表明:KCoF₃ 是一种 ABC₃ 型的钙钛矿结构,属于立方晶系,空间群为 pm-3m[221]。利用 Rietveld 粉末衍射峰形拟合方法对化合物 KCoF₃ 的 X-射线粉末衍射数据进行分析,并对其结构进行精修,表明其晶格常数为 a=4.076(2)Å,晶胞体积为 67.727(7)Å³,每个单胞含 1 个化学式(Z=1),计算密度为 Dc=3.812(1) g/cm³。而对 KCoF₃ 电学性能的研究表明,在 273 K 附近存在 Co 原子自旋态的改变,高自旋态向低自旋态的变化影响了 Co 原子间的超交换作用,进而影响了电输运行为。

关键词: KCoF₃; Rietveld 方法; 自旋态; 超交换作用 中图分类号: O472;O722 **文献标志码:** A

0 引言

近年来,钙钛矿型氟化物以其优异的电极化特 性、铁磁性、非磁绝缘性、光致发光性等特性引起了 人们极大的研究兴趣,而含有过渡金属离子的钙钛 矿型氟化物更是备受人们的关注[1]。以 KMF₃(M: 过渡金属元素)为代表的化合物能够根据自身结构 和外界温度的变化而改变其磁性能和原子自旋结 构^[2]。已有的研究表明:KMnF。由于随着温度的改 变,存在着一个从室温下的立方相向单斜相的转变 (184 K),晶体常数由此而发生改变,并且结构的转 变导致了反铁磁性的出现,在88K以上温度显示出 顺磁性,在88~81 K的温度区间,样品具有单轴向 的反铁磁性,随着温度的继续降低,反铁磁性加 强[3-5]。对于 KFeF。的研究也表明体系中存在着结 构扭曲和磁变化的关系^[2,6]。另外,有关 KCoF₃ 的 报道指出,其奈尔温度为80K,并且随着温度的变 化,体系存在着结构的扭曲现象,伴随 Co 的自旋态 改变^[1,7]。这些主要研究 KMF₃ 化合物的晶体结构 和磁学性能,而其电学性能的变化情况就值得深入 研究。笔者利用简单的液相法合成 KCoF₃ 粉体,利 用 Rietveld 结构修正法对晶体的结构进行修正,对 其结构和形貌作了一些研究,深入分析样品电学性 能随温度变化的情况。

1 实验内容

室温下,秤取 5. 28 g 的 KF 晶体,放在 100 mL 的去离子水,搅拌至溶解。将事先配好的浓度为 1 mol/L 的 $CoCl_2$ 溶液缓慢加入到 KF 溶液中,混合溶液产生粉红色的浑浊物,待溶液混合均匀后,用磁力搅拌器搅拌 6 h,搅拌过程中,注意温度的控制 (本实验温度控制在 $90^{\circ}C$)。待溶液完全反应后,进行抽滤收集,并用无水乙醇洗涤数次,将所得的样品在 $60^{\circ}C$ 下干燥 1.5 h。

2 样品表征

2.1 XRD 分析

所得的样品晶体结构采用 X-射线粉末衍射分析法,衍射数据在德国布鲁克公司 D8 Discover 型 X-射线粉末衍射仪采集,测试条件: Cu $K\alpha$,功率 40 kV×40 mA,扫描速度 $0.02^{\circ}/s$,扫描范围 2θ 为 $10\sim80^{\circ}$;由阵列探测器接收衍射数据。经 X 射线衍

收稿日期:2011-10-16

基金项目: 国家自然科学基金项目(60806045,51072182),浙江省自然科学基金项目(Y1110519)

作者简介: 邹以慧(1986一),男,河南信阳人,硕士研究生,主要从事无机功能材料合成及表征的研究。

射(XRD)分析,结果产物显示为立方结构的 $KCoF_3$,与 PDF 卡片中的 $KCoF_3$ (JCSDS # 18 - 1006)结构相吻合,属于 pm-3m 空间群。由 XRD 衍射峰位置和与之对应的衍射面计算得到的 $KCoF_3$ 晶格常数 a=4.076(2) Å,与理论值 a=4.070(8) Å 非常接近。图 1 为 $KCoF_3$ 的 X 射线衍射图谱。由衍射图谱可以看出,除 $KCoF_3$ 外,没有

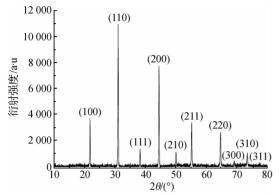


图 1 KCoF₃ 的 X 射线衍射图

其它相存在。

KCoF₃ 的生长具有一定的择优取向,沿着(110)、(200)方向晶体生长占有一定的优势,这一点可以从样品的 X 射线衍射图谱中看出。

利用 Rietveld 粉末衍射峰形拟合方法对化合物 KCoF₃ 的 X-射线粉末衍射数据(表 1)进行分析。对该化合物进行结构修正之前,采用 KCoF₃ (ICSD \sharp 15425)的原子参数作为初始参数输入。用计算机程序 MAUD 对 KCoF₃ 的 X 射线粉末衍射数据进行 Rietveld 结构修正,修正参数包括背底参数、峰形参数、点阵参数、结构参数、织构参数、原子位置以及温度因子等参数^[8]。拟合后的图谱见图 2,修正结果见表 2,修正的峰形因子 R_p 和权重因子 R_{wp} 分别为 R_p =4.6%和 R_{wp} =6.4%,及 R_{exp} =5.8%, R_{B} =1.71%,S=1.10%。表 3 为化合物 KCoF₃ 的原子坐标和各向同性热力参数,图 3 为化合物 KCoF₃ 的晶体结构图。

表 1	化合物 KCoF	的X射线衍射数据
7X I		

		W 1	IP H 18 1 (OOL 3	H 1 // // 11	1 /1 1 2/2 1/11		
晶面指数	晶面间距	晶面间距	衍射强度	晶面指数	晶面间距	晶面间距	衍射强度
hkl	(计算值)/Å	(理论值)/Å	$I/I_{\scriptscriptstyle 0}$ / $\%$	hkl	(计算值)/Å	(理论值)/Å	$I/I_{0}(\%)$
100	4.0771	4.0708	34.38	311	1. 228 8	1. 227 4	2. 94
110	2.8824	2.8785	100.0	222	1. 173 2	1. 175 0	2.30
111	2.3528	2.3503	12.68	321	1.0893	1.0879	5.01
200	2.0369	2.0354	70.40	400	1.0195	1.0177	3.30
210	1.8233	1.8205	10.40	410	0.9878	0.9874	3.20
211	1.6232	1.6619	30.98	330	0.9605	0.9596	3.01
220	1.4411	1.4392	24.42	331	0.9348	0.9340	2.04
300	1.3558	1.3569	4.35	420	0.9111	0.9103	2.40
310	1. 288 6	1. 287 3	9.85	421	0.8833	1.1732	1.30

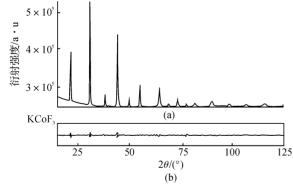


图 2 KCoF₃ 的 Rietveld 衍射图谱

(a)+实验值,一计算值,|可能的布拉格反射位置;(b)观察值与 计算值的残差

表 2 KCoF₃ 的晶体结构参数

空间群	pm-3m[221]
晶胞参数/Å	a=4.076(2)
晶胞体积/ų	67. 727(7)
单胞分子式数	Z=1
计算密度/(g/cm³)	Dc = 3.812(1)
R因子	$R_{\text{wp}} = 6.4\%$, $R_{\text{p}} = 4.6\%$, $R_{\text{exp}} = 5.8\%$,
N 四丁	$R_{\rm B} = 1.71\%$, $S = 1.10\%$

表 3 化合物 KCoF₃ 的原子坐标和各项 同性热力参数

原子	位置	x	У	z	数量	B 因子/ $\mathring{\mathrm{A}}^2$
K	1a	0	0	0	1	0.152
Co	1b	0.5	0.5	0.5	1	0.232
F	3c	0	0.5	0.5	1	0.192

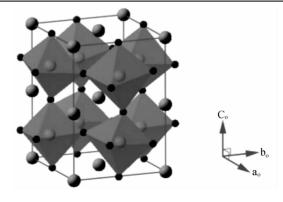


图 3 化合物 KCoF₃ 的晶体结构图 由图 3 可以看出, KCoF₃ 是一种具有钙钛矿结

构的化合物,属于立方晶系,每一个单胞含有一个 K 原子,一个 Co 原子,和三个 F 原子,K 原子占据着 立方晶系的体心位置,Co原子处于立方体的八个顶 点位置,F原子位于每条边的中点。

2.2 样品形貌分析

图 4 为 KCoF₃ 的 SEM 照片,从图 4 中可以看 出,样品 KCoF₃ 晶粒呈现出立方结构,进一步证明 了其属于立方晶系,而晶粒之间是通过其中一个角 衔接在一起的,这可能与 KCoF₃ 晶粒沿着(110)、 (200) 晶面方向择优生长有关,由于(110)和(200) 晶 面之间具有一定的斜度,大约为 45°,晶体沿着这两 个方向生长,晶粒之间必是倾斜连接在一起的,而 SEM 照片也证明了这一点。前面提到过[3,4],KMnF₃颗粒具有一定的铁磁性能,并且随着晶体结构 的变化,发生了磁性的改变;而 KCoF₃ 作为与其类 似的化合物,它的铁磁性能极有可能与晶粒沿不同 晶面方向择优取向有关。从图 3 可以看出,处于 CoF。八面体中的 Co 原子在(110)和(200)晶面方 向的原子间距最小,这样就有利于 Co 原子间超交 换作用的进行,进一步影响体系的铁磁性能。如果 可以控制 KCoF₃ 晶粒之间完全通过这种键接方式 生长,就有可能制备出一种类似链状的 KCoF₃,那 么这种化合物的铁磁性能就有可能得到改善,对铁 磁转变温度会产生影响。这也是今后要研究的 内容。

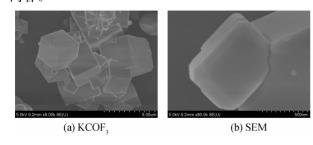


图 4 KCoF₃ 的 SEM 照片

2.3 电学性能

使用 Keithley 2400 表 (Keithley 2400Source Meter)在变温测量系统中采用标准四线法测量了 KCoF3 样品随温度变化的电阻-温度(R-T)曲线及 电流-电压(I-V)曲线。

图 5 是 KCoF₃ 样品的电阻随温度变化关系图。 从图 5 中可以看出,样品的电阻从室温开始随着温 度的降低而显著增加;在273 K 温度之后,电阻便开 始随温度的降低而减小,在一定温度(204 K)表现 出电阻最小值;随着温度的继续降低,电阻值一直持 续上升。电阻的异常表现可能与此时磁学性能的变 化有关。有关文献报道,类似的钙钛矿材料 TbFeO。在此温度区间发生了自旋重取向转变[9-11], 进而改变电输运行为。不仅如此,在整个测试温度 区间,样品 KCoF₃ 的电子传输机制还随着温度的变 化而改变,图 6 给出了样品 KCoF。在不同温度点的 电流-电压变化曲线。

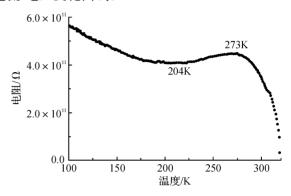
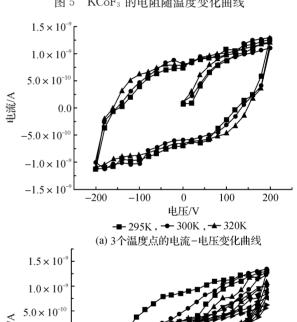



图 5 KCoF₃ 的电阻随温度变化曲线

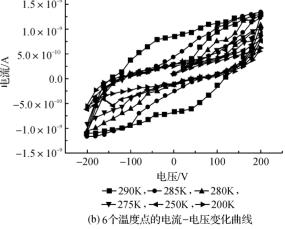


图 6 样品 KCoF₃ 在不同温度点的电流-电压变化曲线

从图 6 可以看出,样品 KCoF3 随温度的降低, 电流-电压曲线不遵循欧姆定律,这说明电阻的变化 与温度有很大的关系[12];另一方面,不同温度点电 流-电压循环扫描曲线形状不一,实际上,这与 Co 原 子的自旋态改变有关。在钙钛矿型 KCoF₃ 中,占据 B 位的 Co 原子间存在着复杂的超交换作用,通过超交换作用实现电子的传递。图 7 所示的是发生超交换作用示意图。

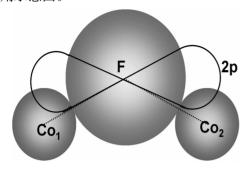


图 7 CoF₆ 八面体间超交换作用示意图

处于相邻两个 CoF_6 八面体中的 Co^2+ 离子由于离子间距较大,不能直接发生电子的传递,需要借助与中间 F^- 离子。 F^- 离子的电子结构为 $1s^2 2s^2 2p^6$,其中 p^- 轨道向近邻的 Co 离子 Co_1 和 Co_2 伸展,一个 p^- 可以转移到 Co_1 的 3d 轨道,由于 Co^2+ 离子已经有五个半满电子,按照洪德法则,氧的 p^- 电子自旋只能与 Co^2+ 的五个电子自旋反平行。同时 p^- 轨道上剩余的一个电子自旋必然是与转移出去的电子自旋反平行。它与 Co_2 之间的交换作用使它与另一个 Co 离子 Co_2 的自旋反平行,结果 Co_1 和 Co_2 反平行。从而 Co^2+ 通过 F^- 实现了间接交换作用,完成电子的传输。

当温度发生改变,如图 5 中温度为 273 K 时,由于 Co²⁺原子从高自旋态向低自旋态改变,对应低能级轨道上的传导电子 t_{2g}和高能级轨道上的局域电子 e_g数目重新分配,也就是说 Co²⁺原子低自旋态的稳定化。实质上,e_g局域电子数目减少,而 t_{2g}传导电子数目增多,那么更多的传导电子则有利于超交换作用的进行^[13],一定程度上导致了电阻随温度的降低而减小,然而体系中 t_{2g}传导电子和 e_g局域电子之间的耦合作用会由于两者之间电子数目的差异而减弱,t_{2g}传导电子被局域化^[14],这就造成了一定温度(204 K)以后,电阻继续随着温度降低而增大。

3 结 论

通过在室温条件下,通过液相反应制备 KCoF₃ 粉体,XRD 结果表明产物是具有立方钙钛矿结构的 纯相 KCoF₃ 晶体。利用 Rietveld 粉末衍射峰形拟 合方法对化合物 KCoF₃ 的 X-射线粉末衍射数据进行分析,并对其结构进行精修,表明其晶格常数为 a = 4.076(2)Å,晶胞体积为 67.727(7)Å³,每个单胞

含1个化学式(Z=1),计算密度为 Dc=3.812(1)g/cm³。对 KCoF。电学性能的研究表明,在 273 K 附近存在 Co 原子自旋态的改变,高自旋态向低自旋态的变化影响了 Co 原子间的超交换作用,进而影响了电输运行为。

参考文献:

- [1] Manivannan V, Parhi P, Kramer J W. Metathesis synthesis and characterization of complex metal fluoride, KMF₃ (M=Mg, Zn, Mn, Ni, Cu and Co) using mechanochemical activation[J]. Bull Mater Sci, 2008, 31(7): 987-993.
- [2] Onishi T, Yoshioka Y. The theoretical study on the magnetic interactions of the perovskite-type KFeF₃ and RbFeF₃ solids[J]. J Surf Sci Nanotech, 2007, 5(2): 20-22.
- [3] Heeger A J, Beckman O, Portis A M. Magnetic properties of KMF₃ []. weak ferromagnetism[J]. Phys Rev, 1961, 123(5): 1652-1660.
- [4] Beckman O, Knox K. Magnetic properties of KMF₃ I. crystallographic studies[J]. Phys Rev, 1961, 121(2): 376-380.
- [5] Agnoli F, Zhou W L, O'Connor C J. Synthesis of cubic antiferromagnetic nanoparticles using reverse micelles and their self-assembly [J]. Adv Mater, 2001, 12(22): 1697-1699.
- [6] Mezzadri F, Fabbrici S, Montanari E, et al. Structural properties and multiferroic phase diagram of K_{0.6} Fe^{||}_{0.6} Fe^{||}_{0.6} Fe^{||}_{0.4} F₃ fluoride with TTB structure[J]. Phys Rev B, 2008, 78(6): 0641111-0641116.
- [7] Onishi T, Yoshioka Y. The theoretical study on the spin state of the perovskite-type KCoF₃ solids[J]. J Surf Sci Nanotech, 2007, 5(2): 17-19.
- [8] Lutterotti L, Matthies S, Wenk H R, et al. Texture and structure analysis of deformed limestone from neutron diffraction spectra[J]. J Appl Phys, 1999, 81(5): 594-600.
- [9] Kim W, Kum B Y, Kim C S. Spin-reorientation and Mössbauer study of orthoferrites TbFe_{0.75} Mn_{0.25} O₃ [J]. J Supercond Nov Magn, 2011, 10(1/2): 867-870.
- [10] Park B G, Kim S B, Lee H J, et al. Magnetic properties of the orthoferrites TbFeO₃ and ErFeO₃[J]. J Korean Phy Soc, 2008, 53(2): 758-762.
- [11] Kim S B, Moon S J, Kim S J, et al. Extraordinary magnetic behavior in TbFeO₃[J]. J Magn Magn Mater, 2007, 310(2): e592-e594.
- [12] 罗炳成, 陈长乐, 高国棉, 等. La_{0.9} Sr_{0.1} MnO₃ 薄膜中电流效应研究[J]. 物理学报, 2007, 56(8): 4920-4824.

- [13] Rivadulla F, Lopez-Quintela M A, Hueso L E, et al. Effect of Mn-site doping ion the magneto transport properties of the colossal magnetoresistance compound $La_{0.67}Ca_{0.33}Mn_{1-x}A_xO_3$ (A = Co, Cr, $x \le 0.1$) [J].
- Phys Rev B, 2000, 62(1): 5678-5683.
- [14] Gangly P, Rao C N R. Metallic and Non-metallic State of Matter[M]. London: Edwards P P and Rao C N R, Taylor and Francis, 1985.

Rietveld Refinement and Electrical Property Research of KCoF₃

ZOU Yi-hui¹, LI Wen-li¹, ZHANG Yan¹, WANG Shun-li¹, LI Pei-gang¹, TANG Wei-hua^{1,2}

(1. Department of physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract: The authors use simple aqueous synthesis method to prepare pure complex fluoride of KCoF₃ crystal powder successfully at room temperature. The sample is characterized by X-ray diffraction (XRD), scan electron microscopy (SEM) and the result proves that the product is KCoF₃, of perovskite-structure and a cube. The space group is pm-3m [221], with a=4.076(2) Å, the cell volume is 67.727(7) Å³, each cell includes one KCoF₃, and the calculate density is 3.812(1) g/cm³. As to the electrical property of KCoF₃, there is a spin state transition near 273 K because the Co³⁺ changes spin state from high spin state to low spin state, which varies the superexchange effect between Co³⁺ atoms.

Key words: KCoF₃; rietveld method; spin state; superexchange effect

(责任编辑:马春晓)